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Abstract Visual analytics for machine learning has

recently evolved as one of the most exciting areas in

the field of visualization. To better identify which

research topics are promising and learn how to apply

relevant techniques in visual analytics applications, we

systematically review 259 papers that are published

in the recent ten years or the representative works

before 2010. We build a taxonomy, which includes three

first-level categories: techniques before model building,

techniques in modeling building, and techniques after

model building. Each category is further characterized

by representative analysis tasks, and each task is

exemplified by a set of recent influential works. We also

discuss and highlight research challenges and potential

future research opportunities that can be promising and

useful for visual analytics researchers.

Keywords visual analytics; machine learning;

data quality; feature selection; model

understanding; content analysis.

1 Introduction

The recent success of artificial intelligence

applications depends on the performance and

capabilities of machine learning models [162]. In

the past ten years, a variety of visual analytics

methods have been proposed to make machine
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learning more explainable, trustworthy, and reliable.

These research efforts fully combine the advantages

of interactive visualization and machine learning

techniques to facilitate the analysis and understanding

of the major components in the learning process,

with an aim to improve performance. For example,

visual analytics research for explaining the inner

workings of deep convolutional neural networks has

increased the transparency of deep learning models and

received continuous, even more enormous attention

recently [54, 103, 162, 285].

The rapid development of visual analytics techniques

for machine learning yields an emerging need for a

comprehensive analysis of this area to support the

understanding of how visualization techniques are

designed and applied in machine learning pipelines.

There are several initial efforts to summarize the

advances in this field from different aspects. For

example, Liu et al. [161] summarized the visualization

techniques for text analysis. Lu et al. [172] surveyed

visual analytics techniques for predictive models.

Recently, Liu et al. [162] presented a viewpoint paper

on the analysis of machine learning models from the

visual analytics perspective. Sacha et al. [217] analyzed

a set of example systems and proposed an ontology for

visual analytics assisted machine learning. However,

existing surveys either focus on a specific area of

machine learning (e.g. , text mining [161], predictive

model [172], model understanding [162]) or aim to

sketch an ontology [217] based on a set of example

techniques only.

In this paper, we aim to provide a comprehensive

survey of visual analytics techniques for machine

learning, which focuses on every phase of the machine

learning pipeline. We focus on the works in the

visualization community. Still, the AI community has

also made solid contributions to the study of visually

explaining the feature detectors in deep learning
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models. For example, Selvaraju et al. [221] tried

to identify the sensitive part of an image to its

classification result by computing the class activation

maps. Readers can refer to the surveys of Zhang et

al. [226] and Hohman et al. [103] for more details.

We collect 259 papers from related top-tier venues in

the past ten years through a systematical procedure.

According to the machine learning pipeline, we divide

the literature into three stages: before, in, and

after model building. We analyze the functions

of visual analytics techniques in the three stages

and abstract typical tasks, including improving data

quality and feature quality before model building,

model understanding, diagnosing, and steering in

modeling building, data understanding after model

building. Each task is featured by a set of carefully

selected examples. We highlight six prominent research

directions and open problems in the field of visual

analytics for machine learning. We hope that this

survey acts as the context to discuss machine learning

related visual analytics techniques and a start point for

practitioners and researchers to develop visual analytics

tools for machine learning.

2 Survey Landscape

2.1 Paper Selection

In this paper, we focus on visual analytics techniques

that help develop explainable, trustworthy, and reliable

machine learning applications. To comprehensively

survey visual analytics techniques for machine learning,

we performed an exhausting manual review of related

top-tier venues in the past ten years (2010-2020).

The venues consist InfoVis, VAST, Vis (later SciVis),

EuroVis, PacificVis, IEEE TVCG, CGF, and CG&A.

The manual review was conducted by three Ph.D.

candidates with more than two years of research

experience in visual analytics. We followed the manual

review process in the text visualization survey [161].

Specifically, we first reviewed the titles of papers from

the aforementioned venues to identify candidate papers.

Next, we reviewed the abstracts of identified candidate

papers to further determine whether they are visual

analytics techniques for machine learning. If the title

and abstract cannot provide clear information, the full

text was gone through for the final decision. In addition

to the exhausting manual review of the above venues,

we also searched for the representative related works

that appeared previously or in other venues, such as

the Profiler [123].

After the reviewing and searching process, 259 papers

are selected. Tab. 1 presents detailed statistics. Due to

the boosting of machine learning techniques in the past

ten years, this field has been attracting more and more

research attention.

2.2 Taxonomy

In this section, we comprehensively analyze the

collected visual analytics works for systematically

understanding the major research trends. These works

are categorized based on a typical machine learning

pipeline [182] to solve real-world problems. As shown

in Fig. 1, such a pipeline contains three stages: (1)

data pre-processing before model building, (2) machine

learning model building, and (3) deployment after

the model is built. Accordingly, the visual analytics

techniques for machine learning can be mapped into

these three stages: techniques before model building,

techniques in model building, and techniques after

model building.

2.2.1 Techniques before Model Building

The major goal of visual analytics techniques before

model building is to help model developers better

prepare the data for model building. The quality

of the data is mainly determined by the data itself

and the features we use. Accordingly, there are two

research directions, i.e., visual analytics for data quality

improvement and feature engineering.

Data quality can be improved from various aspects,

such as completing the missing data attributes and

correcting wrong data labels. Previously, these tasks

are mainly conducted manual or by automatic methods,

such as the learning-from-crowds algorithms [108] to

estimate the ground-truth labels from noisy crowd-

sourced labels. To reduced experts’ efforts or further

improve the results of automatic methods, there are

some works that employ visual analytics techniques to

interactively improve the data quality. Tab. 1 shows

that in recent years, this topic gains more and more

research attention.

Feature engineering is used to select the best

features to train the model. For example, in computer

vision, we could use HOG (Histogram of Gradient)

features instead of using raw image pixels. In visual

analytics, interactive feature selection aims to form

an interactive and iterative feature selection process.

In recent years, in the deep learning era, feature

selection and construction is mostly conducted via

neural networks. Echoing this trend, there is less

research attention in recent years (2016-2020) in this

direction (Tab. 1).
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Machine learning pipeline

Before model building

Visual analytics for machine learning

Model building After model building

Data 
preparation

Feature 
extraction

Model 
selection

Model 
training

Evaluation Deployment

Model understanding
Model diagnosis
Model steering

Improving Data Quality
Improving Feature Quality

Understanding the static data
Understanding the temporal data

Fig. 1 An overview of visual analytics research for machine learning.

2.2.2 Techniques in Model Building

Model building is a central stage in building a

successful machine learning application. Developing

visual analytics methods to facilitate model building

is also a growing research direction in visualization

(Tab. 1). In this survey, we categorize current methods

by their analysis goal, i.e., model understanding,

diagnosis, and steering. Model understanding aims at

visually explaining the working mechanisms of a model,

such as how the change of parameters will influence the

model and why the model gives an output for a specific

input. Compared with model understanding, model

diagnosis focuses on the modeling training process. It

mainly targets at diagnosing the errors in training via

interactive exploration of the training process. Model

steering is mainly for interactively improving the model

performance. For example, to refine a topic model,

Utopian [53] enables users to interactively merge or

split topics, and automatically modify the other topics

accordingly.

2.2.3 Techniques after Model Building

After a machine learning model is built and deployed,

it is crucial to help model users (e.g., a domain expert)

to understand the model output in an intuitive way and

further enable the trust of the model output. To this

end, there are many visual analytics methods developed

for different applications to explore the model output.

Compared with the methods for model understanding

in model building, these methods often target model

users instead of model developers. Thus, the internal

workings of a model are not illustrated, but the focus is

on the intuitive presentation and exploration of model

output. As these methods are often data-driven or

application-driven, in this survey, we categorize these

methods by the type of data being analyzed, i.e., static

data or temporal data.

3 Techniques before Model Building

Two major tasks before building a model are data

processing and feature engineering. They are critical

because practical experience indicates that low-quality

data and features will degrade the performance of

machine learning models [196, 242]. Data quality

issues include missing values, outliers, and noises in

instances and their labels. Feature quality issues are

represented as irrelevant features, redundancy among

features, etc. While manually addressing these issues

is time-consuming, automatic methods would also

face poor performance. To this end, various visual

analytics techniques have been developed to reduce

experts’ efforts as well as to simultaneously improve

the performance of automatic methods for high-quality

data and features.

3.1 Improving Data Quality

Data includes instances and their labels [198].

From this perspective, existing efforts for improving

data quality can be classified into two categories:

(1) instance-level improvement, and (2) label-level

improvement.

Instance-Level Improvement. At the instance
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Tab. 1 Categories of visual analytics techniques for machine learning and the representative works in each category.The number

of papers is shown in the brackets.

Technique categories Papers Trend

Techniques before Model Building
Improving Data Quality (31)

[3], [11], [14], [16], [17], [18],

[25], [45], [61], [91], [96], [101],

[102], [118], [123], [125], [136],

[144], [156], [192], [201], [203],

[204], [213], [227], [228], [231],

[256], [258], [267], [274]

Improving Feature Quality (6)
[109], [132], [183], [194], [222],

[238]

Techniques in Model Building

Model Understanding (30)

[28], [38], [56], [71], [79], [84],

[104], [115], [116], [119], [120],

[137], [155], [158], [184], [187],

[188], [195], [197], [209], [212],

[219], [223], [234], [252], [253],

[254], [268], [289], [297]

Model Diagnosing (19)

[2], [7], [19], [32], [33], [63],

[86], [98], [131], [154], [163],

[177], [206], [210], [229], [233],

[251], [266], [291]

Model Steering (29)

[23], [39], [40], [41], [53], [60],

[64], [69], [73], [76], [77], [127],

[138], [141], [153], [169], [180],

[185], [189], [193], [200], [207],

[216], [220], [245], [249], [261],

[282], [296]

Techniques after Model Building
Understanding static data analysis

results(43)

[4], [15], [22], [27], [29], [37],

[43], [47], [57], [66], [72], [75],

[81], [83], [85], [87], [89], [92],

[100], [105], [106], [107], [112],

[113], [114], [117], [121], [126],

[128], [129], [146], [159], [160],

[166], [199], [202], [205], [224],

[247], [250], [276], [293], [295]

Understanding dynamic data

analysis results (101)

[5], [6], [8], [9], [10], [20], [24],

[26], [31], [34], [35], [36], [42],

[46], [48], [49], [50], [51], [52],

[55], [58], [59], [62], [67], [68],

[70], [74], [78], [80], [88], [90],

[93], [94], [95], [97], [99], [110],

[111], [122], [124], [133], [134],

[135], [140], [143], [145], [147],

[150], [151], [164], [165], [167],

[168], [173], [174], [175], [176],

[179], [181], [191], [208], [211],

[215], [218], [225], [230], [232],

[235], [236], [237], [240], [241],

[243], [246], [248], [259], [260],

[263], [264], [265], [269], [270],

[271], [272], [273], [275], [277],

[278], [279], [280], [283], [284],

[286], [287], [288], [290], [292],

[294], [298], [299], [300]

level, many visual analytics methods focus on detecting

and correcting anomalies in data, such as missing

values and duplication. For example, Kandel et

al. [123] proposed Profiler to aid the discovery and

assessment of anomalies in tabular data. Anomaly

detection methods are applied to detect data anomalies,

which are classified into different types subsequently.

Based on the detected anomalies and their types,

linked summary visualizations are automatically

recommended to facilitate the discovery of potential

causes and consequences of these anomalies. VIVID [3]

was developed to handle missing values in longitudinal

cohort study data. Through multiple coordinated

visualizations, experts can identify the root cause of
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Fig. 2 OoDAnalyzer [45], an interactive method to detect out-of-distribution samples and explain them in context.

missing values (e.g. , a particular group who does not

participate in follow-up examinations), and replace the

missing data with an appropriate imputation model.

Anomalies removal is often an iterative process and is

performed multiple times. Illustrating the provenance

in this iterative process allows users to be aware of

the change of data quality and build trust in the

processed data. To this end, Bors et al. [25] proposed

DQProv Explorer to support the analysis of data

processing provenance. It consists of a provenance

graph to support the navigation of data states and a

quality flow to present the change of data quality over

time. Recently, another type of data anomaly, out-

of-distribution (OoD) samples, has received extensive

attention [139, 142]. OoD samples are test samples that

are not well covered by training data, which is a major

source of model performance degradation. To tackle

this issue, Chen et al. [45] proposed OoDAnalyzer

to detect and analyze OoD samples. An ensemble

OoD detection method, combining both high- and low-

level features, was proposed to improve the detection

accuracy. Based on the detection result, a grid

visualization (Fig. 2) is utilized to explore OoD samples

in context and explain the underlying reason for their

appearance. In order to generate grid layouts in

interactive rates during the exploration, a kNN-based

grid layout algorithm motivated by Hall’s theorem was

developed.

When considering time-series data, several challenges

arise as time has distinct characteristics that induce

specific quality issues and require analysis in a temporal

context. To tackle this issue, Arbesser et al. [11]

proposed a visual analytics system, Visplause, to

visually assess time-series data qualities. Anomaly

detection results, e.g. , frequencies of anomalies and

their temporal distributions, are shown in a tabular

layout. In order to address the scalability problem,

data are aggregated in a hierarchy based on meta-

information, which enables analyzing a group of

anomalies (e.g. , abnormal time series of the same

type) simultaneously. Besides automatically detected

anomalies, KYE [91] also supports the identification

of additional anomalies that have been overlooked by

automatic methods. Time-series data is presented in a

heatmap view, where abnormal patterns (e.g. , regions

with unusually high values) are potential anomalies.

Clickstream data is a widely studied time-series data

in the field of visual analytics. To better analyze

and refine clickstream data, Segmentifier [61] was

proposed to provide an iterative exploration process for

segmenting and analyzing. Users can explore segments

in three coordinated views at different granularities and

refine them by filtering, partitioning, and transforming.

Every refinement step results in new segments, which

can be further analyzed and refined.

To tackle the uncertainties in the data quality

improvement, Bernard et al. [16] developed a visual

analytics tool to exhibit the changes in the data

5
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and uncertainties caused by different preprocessing

methods. With this tool, experts are aware of the

effects of these methods and choose suitable ones

to reduce task-irrelevant parts while preserving task-

relevant parts of the data.

As data has the risk of exposing sensitive

information, several recent studies have focused

on preserving data privacy in the data quality

improvement process. For tabular data, Wang et

al. [258] developed a Privacy Exposure Risk Tree

to display privacy exposure risks in the data and a

Utility Preservation Degree Matrix to exhibit how the

utility is changed as privacy-preserving operations are

applied. To preserve privacy in network datasets,

Wang et al. [256] presented a visual analytics system,

GraphProtector. To preserve important structures

of networks, node priorities are first specified based

on their importance. Important nodes are assigned

with low priorities, reducing the possibility of these

nodes to be modified. Based on node priorities and

utility metrics, users can apply and compare a set of

privacy-preserving operations and choose the “best”

one according to their knowledge and experiences.

Label-Level Improvement. According to whether

the data has noisy labels, existing works can be

classified into two categories: improving the quality of

noisy labels and interactive labeling.

Crowdsourcing provides a cost-effective way to

collect noisy labels. However, the annotations provided

by crowd workers are usually noisy [152, 242]. Many

methods have been proposed to remove noise in the

labels. Willett et al. [267] developed a crowd-assisted

clustering method to remove redundant explanations

provided by crowd workers. Explanations are

clustered into groups, of which the most representative

ones are preserved. Park et al. [204] proposed

C2A that visualizes crowdsourced annotations and

worker behaviors to help doctors identify malignant

tumors in clinical videos. With C2A, doctors

can discard most tumor-free video segments and

focus on the ones that are likely to contain

tumors. To analyze the accuracy of crowdsourcing

workers, Park et al. [203] developed CMed that

visualizes clinical image annotations by crowdsourcing

and workers’ behaviors. By clustering workers

according to their annotation accuracy and analyzing

their logged events, experts are able to find good

workers and observe the effect of workers’ behavior

patterns. LabelInspect [156] was proposed to improve

crowdsourced labels by validating uncertain instance

labels and unreliable workers. Three coordinated

visualizations, a confusion (Fig. 3(a)), an instance

(Fig. 3(b)), and a worker visualization (Fig. 3(c)), were

developed to facilitate the identification and validation

of uncertain instance labels and unreliable workers.

Based on expert validation, more instances and workers

are recommended for validating by an iterative and

progressive verification procedure.

Although the aforementioned methods can effectively

improve crowdsourced labels, such crowd information

are not available in many real-world datasets. For

example, the ImageNet dataset [214] only contains the

cleaned labels via automatic noise removal methods.

To tackle these datasets, Xiang et al. [274] developed

DataDebugger to interactively improve data quality by

utilizing user-selected trusted items. A hierarchical

visualization combined with an incremental projection

method and an outlier biased sampling method are

presented to facilitate the exploration and identification

of trusted items. Based on these identified trusted

items, a data correction algorithm was developed to

propagate labels from trusted items to the whole

dataset. Paiva et al. [201] assumed that instances

misclassified by a trained classifier were likely to

be mislabeled instances. Based on this assumption,

they employed a Neighbor Joining Tree enhanced by

multidimensional projections to help users explore

misclassified instances and correct mislabeled ones.

After the correction, the classifier can be refined with

the corrected labels, and a new round of correction

starts. Bäuerle et al. [14] developed three classifier-

guided measures to detect data errors. Data errors are

then presented in a matrix and a scatter plot, which

allows experts to reason about and resolve errors.

All the above methods start with a set of labeled data

with noise. However, many datasets do not contain

such a label set. To tackle this issue, many visual

analytics methods have been proposed for interactive

labeling. Reducing labeling efforts is one major goal

of interactive labeling. To this end, Moehrmann et

al. [192] used a SOM-based visualization to place

similar images together, which allows users to label

multiple similar images of the same class in one go. This

strategy is also used by Khayat et al. [125] to identify

social spambot groups with similar anomaly behaviors,

Kurzhals et al. [136] to label mobile eye-tracking data,

and Halter et al. [96] to annotate and analyze primary

color strategies used in films. Apart from placing

similar items together, other strategies, like filtering,

are also applied to find items of interest for labeling.

Filtering and sorting are utilized in MediaTable [213]

to find similar video segments. A table visualization is
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Fig. 3 LabelInspect [156], an interactive method to verify uncertain instance labels and unreliable workers.

utilized to present video segments and their attributes.

Users can filter out irrelevant segments and sort on

attributes to order relevant segments. Consequently,

users are able to label several segments of the same

class simultaneously. Stein et al. [231] provided a rule-

based filtering engine to find the patterns of interest in

soccer match videos. Experts can interactively specify

rules through a natural language GUI.

Recently, to enhance the effectiveness of interactive

labeling, various visual analytics methods combine

visualization techniques with machine learning

techniques, such as active learning. The concept

of “intra-active labeling” was first introduced by

Hoferlin et al. [102], which enhances active learning

with human knowledge. Users are not only able to

query instances and label them via active learning,

but also to understand and steer machine learning

models interactively. This concept is also used in text

document retrieval [101], sequential data retrieval [144],

trajectory classification [118], identifying relevant

tweets [227], and argumentation mining [228]. For

example, to annotate text fragments in argumentation

mining tasks, Sperrle et al. [228] developed a language

model for fragment recommendation. A layered visual

abstraction is utilized to support five relevant analysis

tasks required by text fragments annotation. In

addition to developing systems for interactive labeling,

some empirical experiments were conducted to

demonstrate its effectiveness. For example, Bernard et

al. [17] conducted experiments to show the superiority

of user-centered visual interactive labeling over model-

centered active learning. A quantitative analysis [18]

was also performed to evaluate user strategies for

selecting samples in the labeling process. Results

show that in early phases, data-based user strategies

(e.g. , clusters and dense areas) work well. However,

in later phases, model-based user strategies (e.g. , class

separation) perform better.

3.2 Improving Feature Quality

A typical method to improve feature quality is

selecting useful features that contribute most to the

prediction, i.e., feature selection [44]. A common

feature selection strategy is to select a subset of

features that minimizes the redundancy among them

and maximizes the relevance between them and targets

(e.g. , classes of instances) [183]. Along this line, several

methods have been developed to interactively analyze

the redundancy and relevance of features. For example,

Seo et al. [222] proposed a rank-by-feature framework,

which ranks features by relevance. They visualized

ranking results with tables and matrices. Ingram et

al. [109] proposed a visual analytics system, DimStiller,

which allows users to explore the features and their

relationships and interactively remove irrelevant and

redundant features. May et al. [183] proposed

SmartStripes to select different feature subsets for

7
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Fig. 4 CNNVis [155], a network-centric visual analytics technique to understand deep convolutional neural networks with millions

of neurons and connections.

different data subsets. A matrix-based layout is utilized

to exhibit the relevance and redundancy of features.

Mühlbacher et al. [194] developed a partition-based

visualization for the analysis of the relevance of features

or feature pairs. The features or feature pairs are

partitioned into subdivisions, which allows users to

explore the relevance of features (or feature pairs)

at different levels of details. A parallel coordinates

visualization was utilized by Tam et al. [238] to identify

features that could discriminate different clusters.

Krause et al. [132] ranked features across different

feature selection algorithms, cross-validation folds, and

classification models. Users are able to interactively

select the features and models that lead to the best

performance.

Besides selecting existing features, constructing new

features is also useful to facilitate the model building.

For example, FeatureInsight [30] was proposed

to construct new features for text classification.

By visually examining the classifier errors and

summarizing the root causes of these errors, users

are able to create new features that can correctly

discriminate these misclassified documents. To improve

the generalization capability of new features, visual

summaries are used to analyze a set of errors instead of

individual ones.

4 Techniques in Model Building

Machine learning models are usually regarded as

“black boxes” because of their lack of interpretability,

which hinders their practical use in risky scenarios such

as self-driving cars and financial investment. Current

visual analytics techniques in model building explore to

reveal the underlying working mechanisms of machine

learning models and then help model developers to

build well-performed models. First of all, model

developers call for a comprehensive understanding of

the models in order to release them from the time-

consuming trial-and-error process. When the training

process crashes or the model fails to get satisfying

performance, model developers demand to diagnose the

issues occurring in the training process. Finally, there

is a need to assist model steering as much time is

spent in improving the model performance in the model

building process. Echoing these needs, researchers

developed many visual analytics methods to enhance

model understanding, diagnosing, and steering [54,

162].

4.1 Model Understanding

The works related to model understanding can be

categorized into two classes: (1) understanding the

effect of parameters, and (2) understanding the model

behaviours.

8
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Understanding the effect of parameters. One

aspect of model understanding is to inspect how the

model outputs change as the model parameters change.

For example, Ferreira et al. [79] developed BirdVis to

explore the relationships between different parameter

configurations and model outputs, i.e., bird occurrence

predictions in their application. The tool also reveals

how these parameters are related to each other in

the prediction model. Zhang et al. [292] proposed a

visual analytics method to visualize how the variables

affect the statistical indicators in the logistic regression

model.

Understanding the model behaviours. Another

aspect is to figure out how the model works to produce

desired outputs. There are mainly three types of

methods to explain the model behaviours, namely

network-centric, instance-centric, and hybrid methods.

Network-centric methods aim at exploring the model

structure and interpreting how different parts of

the model (e.g. , neurons/layers in convolutional

neural networks) cooperate with each other to

produce the final outputs. Earlier works employ

directed graph layouts to visualize the structure of

neural networks [244], but visual clutter remains a

serious problem with the model structure becoming

increasingly complex. To tackle this problem,

Liu et al. [155] developed CNNVis to visualize deep

convolutional neural networks. CNNVis (Fig. 4)

leverages clustering techniques to group neurons of

similar roles as well as their connections in order to

address visual clutters caused by the huge amount.This

tool helps experts understand the roles of the neurons

and their learned features, and moreover, the process

of how low-level features are aggregated into high-level

ones through the network. Later, Wongsuphasawat et

al. [268] designed a graph visualization for exploring the

machine learning model architecture in Tensorflow [1].

They conducted a series of graph transformations to

compute a legible interactive graph layout from a

given low-level dataflow graph to display the high-level

structure of the model.

Instance-centric methods aim at providing instance-

level analysis and exploration, as well as understanding

the relationships among instances. Rauber et al. [209]

visualized the representations learned from each layer

in the neural network by projecting them onto 2D

scatterplots. Users can identify clusters and confusion

areas in the representation projections and, therefore,

understand the representation space learned by the

network. Furthermore, they can study how the

representation space is evolved through the training

session so as to understand the network’s learning

behaviour. Some visual analytics techniques for

understanding recurrent neural networks (RNNs) also

adopts such a instance-centric design. LSTMVis [234]

developed by Strobelt et al. utilizes parallel coordinates

to present the hidden states, which supports the

analysis of the changes in the hidden states over

texts. RNNVis [187] developed by Ming et al. clusters

the hidden state units (a hidden state unit refers to

one dimension of the hidden states vector in RNNs)

as memory chips and words as word clouds. Their

relationships are modeled as a bipartite graph, which

supports the sentence-level explanations in RNNs.

Hybrid methods combine the above two methods

and leverage both of their strengths. In particular,

the instance-level analysis can be enhanced with the

context of the network architecture. Such contexts

will benefit the understanding of the network’s working

mechanism. For instance, Hohman et al. [104] proposed

Summit to reveal important neurons and critical neuron

associations contributing to the model prediction.

It integrates an embedding view to summarize the

activations among classes and an attribute graph view

to reveal the influential connections between neurons.

Kahng et al. [119] proposed ActiVis to large-scale deep

neural networks. It visualizes the model structure with

a computational graph and the activation relationships

among instances, subsets, and classes using a projected

view.

In recent years, there have been some efforts to use

a surrogate explainable model to explain the model

behaviour. The major benefit of these methods is

that they do not require users to get into the model

itself. Thus, they are more applicable to those

without or with limited machine learning knowledge.

Treating the classifier as a black box, Ming et al. [188]

extracted the rule-based knowledge from the input

and output of the classifier first. These rules are

then visualized using RuleMatrix, which supports

practitioners to interactively explore the extracted rules

and improve the interpretability of the model. Wang et

al. [253] developed DeepVID to generate the visual

interpretation for image classifiers. Given an image

of interest, a deep generative model was first used to

generate the samples near it. These generated samples

were used to train a simpler and more interpretable

model, such as a linear regression classifier, which helps

explain how the original model makes the decision.
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Fig. 5 AEVis [33], a visual analytics system for analyzing adversarial samples. It shows the diverging and merging patterns in the

extracted datapaths with a river-based visualization and the critical feature maps with a layer-level visualization.

4.2 Model Diagnosing

According to the content involved in the diagnosis,

existing visual analytic techniques for model diagnosing

fall into two categories: (1) analyzing the training

results, and (2) analyzing the training dynamics.

Analyzing the training results. There are

tools developed for the diagnosis for classifiers based

on the unsatisfying performance [7, 19, 86, 210].

For example, Squares [210] used boxes to represent

samples and group them according to their prediction

classes. With different textures that encode true/false

positives/negatives, this tool is proved to allow fast

and accurate estimation of performance metrics at

multiple levels of detail. Recently, the issue of model

fairness has drawn growing attentions [2, 32, 266].

For example, Ahn et al. [2] proposed a framework

named FairSight and implemented a visual analytics

system to support the analysis of fairness in ranking

problems. They divided the machine learning pipeline

into three phases (data, model, and outcome) and

then measured the bias both at the individual level

and group level using different measures. Based on

these measures, developers can iteratively identify the

features that cause discrimination and remove them

from the model. Researchers are also interested in

exploring the potential vulnerabilities in the model

that prevent it from being reliably applied to real-

world applications [33, 177]. Cao et al. [33] proposed

AEVis to analyze how the adversarial examples fooled

the neural networks. The system (see Fig. 5) takes

both normal and adversarial examples as the input

and extracted their datapaths for the model prediction.

It then employs a river-based metaphor to show

the diverging and merging patterns of the extracted

datapaths, which reveals where the adversarial samples

mislead the model. Ma et al. [177] designed a series

of visual representations to reveal how data poisoning

will make a model misclassify a specific sample from

overview to detail. By comparing the distribution of

the poisoned and the normal training data, experts

can conclude the reason for the misclassification of the

attacked sample.

Analyzing the training dynamics. Recent

efforts have also been concentrated on analyzing the

training dynamics. These techniques are developed

for debugging the training process of machine learning

models. For example, DGMTracker [154] assists

experts to reason the failed training process of deep

generative models. It utilizes a blue-noise polyline

sampling algorithm to simultaneously keep the outliers

and the major distribution of the training dynamics in

order to help experts detect the potential root cause

of a failure. It also employs a credit assignment

algorithm to disclose the interaction among neurons

to facilitate the diagnosis of the propagation of the

10
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Fig. 6 ReVision [282], a visual analytics system integrating a constrained hierarchical clustering algorithm with an uncertainty-

aware, tree-based visualization to help users interactively refine the hierarchical topic modeling results.

failure. Besides, attention has been brought to the

diagnosis of the training process of deep reinforcement

learning. Wang et al. [251] proposed DQNViz for the

understanding and diagnosis of deep Q-networks for

a Breakout game. At the overview level, DQNViz

presents the changes in the overall statistics over the

training process with line charts and stacked area

charts. Then at the detail level, it uses segment

clustering and then a pattern mining algorithm to

help experts identify the common as well as the

suspicious patterns in the event-sequences of the agents

in Q-networks. As another example, He et al. [98]

proposed DynamicsExplorer to diagnose LSTM trained

for controlling a ball-in-maze game. To support

quick identification of where the training failure arises,

it visualizes the ball trajectories with a trajectory

variability plot as well as their clusters with a parallel

coordinates plot.

4.3 Model Steering

There are two major strategies for model steering:

(1) refining the model with human knowledge, and (2)

selecting the best model from a model ensemble.

Refining the model with human knowledge.

Several visual analytics techniques have been developed

to loop users into the model refinement process through

flexible interactions.

Users can directly refine the target model with

visual analytics techniques. A typical example is

ProtoSteer [189], a visual analytics system that enabled

editing prototypes to refine a prototype sequence

network named ProSeNet [190]. ProtoSeer uses four

coordinated views to present the information of the

learned prototypes in ProSeNet. Users can refine

these prototypes by adding, deleting, and revising some

specific prototypes. The model will then be retrained

with these user-specific prototypes for performance

gain. In addition, van der Elzen et al. [245] proposed

BaobabView to support experts to construct decision

trees iteratively with domain knowledge. Experts

can refine the decision tree with direct operations,

including growing, pruning, and optimizing the internal

nodes, and evaluate the refined one with various visual

representations.

Besides the direct model update, users can

also correct the flaws in the results or provide

extra knowledge, and the model will be updated

implicitly to produce improved results based on human

feedback. Several works have focused on incorporating

user knowledge into topic models to improve their

results [53, 69, 73, 127, 261, 282]. For instance,

Yang et al. [282] presented ReVision that allows

users to steer the hierarchical clustering results by

leveraging an evolutionary Bayesian rose tree clustering

algorithm with constraints. As shown in Fig. 6, the

constraints and the clustering results are displayed with

an uncertainty-aware tree-based visualization to guide

the steering of the clustering results. Users can refine

the constraint hierarchy by dragging. The documents

will be re-clustered based on the modified constraints.

Other human-in-the-loop models have also stimulated

the development of visual analytic systems to support

11
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(a) (b)

Fig. 7 Some examples of static text visualization. (a) TopicPanorama [160] extracted the topic graphs from multiple sources and

revealed the relationships among them using graph layout. (b) DemographicVis [66] measured the similarity between different users

after analyzing their post contents, and revealed their relationships using t-SNE projection.

such kind of model refinement. For instance, Liu et

al. [153] proposed MutualRanker using an uncertainty-

based mutual reinforcement graph model to retrieve

important blogs, users, and hashtags from microblog

data. It shows the ranking results, uncertainty, and its

propagation with the help of a composite visualization,

and users can examine the most uncertain items in the

graph and adjust their ranking scores. The model will

incrementally update by propagating the adjustments

through the graph.

Selecting the best model from a model

ensemble. Another strategy for model steering is to

select the best one from a model ensemble, which is

usually found in clustering [41, 200, 220] and regression

models [23, 60, 169, 207]. Clustrophile 2 [41] is a visual

analytics system for visual clustering analysis, which

guides users to select the appropriate input features

and clustering parameters through recommendations

based on user-interested results. BEAMES [60] was

designed for multimodel steering and selection in

regression tasks. It created a collection of regression

models by varying algorithms and their corresponding

hyperparameters, with further optimization by the

interactive weighting of data instances and interactive

feature selection and weighting. Users can inspect them

and then select an optimal model according to different

aspects of performance, such as their residual scores

and mean squared errors.

5 Techniques after Model Building

Existing visual analytics efforts after model building

aim at helping users understand and gain insights from

model outputs, such as high-dimensional data analysis

results [157, 161]. As these methods are often data-

driven, we categorize the corresponding methods by the

type of data to be analyzed. The temporal property of

data is critical in visual design. Thus, in this paper,

we classify the data into two categories: understanding

static data analysis results and understanding dynamic

data analysis results. A visual analytics system for

understanding static data analysis results usually treats

all the model output as a large collection and mainly

analyzes the static structure. For dynamic data, in

addition to understanding the analysis results at each

time point, the system focuses more on illustrating the

evolution of data over time, which is learned by the

analysis model.

5.1 Understanding Static Data Analysis

Results

We summarize the research on understanding static

data analysis according to data types. Most research

efforts focus on textual data analysis, while fewer works

study the understanding of other types of data analysis.

Textual data analysis. The most widely studied

topic is visual text analytics, which tightly integrates

interactive visualization techniques with text mining

techniques (e.g., document clustering, topic models,

and word embedding) to help users better understand

and consume a large amount of textual data [161].

12
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Some early works employed simple visualizations to

directly convey the results of classical text mining

techniques, such as text summarization, categorization,

and clustering. For example, Görg et al. [89]

developed a multi-view visualization consisting of a

list view, a cluster view, a word cloud, a grid

view, and a document view, to visually illustrate the

analysis results of document summarization, document

clustering, sentiment analysis, entity identification,

and recommendation. By combining interactive

visualization with text mining techniques, a smooth

and informative exploration environment is provided to

users.

Most of the later research has focused on combining

well-designed interactive visualization with state-of-

the-art text mining techniques, such as topic models

and deep learning models, to disclose more insights

embedded in textual data. To provide an overview

of the relevant topics discussed in multiple sources,

Liu et al. [160] first utilized the correlated topic

model to extract the topic graphs from multiple text

sources, respectively. A graph matching algorithm

is then developed to match the topic graphs from

different sources, and a hierarchical clustering method

is employed to generate the hierarchies for topic graphs.

Both the matched topic graph and hierarchies are fed

into a hybrid visualization consists of a radial icicle plot

and a density-based node-link diagram (Fig. 7(a)), to

support the exploration and analysis of the common

and distinctive topics discussed in multiple sources.

Dou et al. [66] introduced DemographicVis to analyze

different demographic groups on social media based

on the content generated by users. An advanced

topic model, latent Dirichlet allocation (LDA) [178],

was employed to extract the topic features from the

corpus. The relationships between the demographic

information and extracted features were explored

through a Parallel Sets visualization [130], and different

demographic groups are projected onto the two-

dimension space based on their similarity of the topics

of interest (Fig. 7(b)). Recently, some deep learning

models are also adopted because of better performance.

For example, Berger et al. [15] proposed cite2vec to

visualize the latent themes in a document collection

via the document usage (e.g. , citation). It extended

a famous word2vec model, skip-gram model [186], to

generate the embedding for both words and documents

by considering the citation information and the text

content together. The words are projected onto two-

dimension space using t-SNE first, and the documents

are projected onto the same space, where both the

document-word relationship and document-document

relationships are considered simultaneously.

Other types of data analysis. In addition to

textual data, other types of data are also studied.

For example, Hong et al. [105] analyzed the flow

field through an LDA model by defining pathlines as

documents and features as words, respectively. After

the modeling, the original pathlines and the extracted

topics were projected onto a two-dimension space

using multidimensional scaling, and several previews

were generated to show the rendering result of the

pathlines in the important topics. Recently, a visual

analytics tool, SMARTexplore [22], was developed to

help analysts find and understand interesting patterns

within and across dimensions, including correlations,

clusters, and outliers. To this end, it tightly couples

a table-based visualization with pattern matching and

subspace analysis.

5.2 Understanding Dynamic Data Analysis

Results

In addition to understanding the results of static data

analysis, it is also important to investigate and analyze

how the latent themes in data change over time. For

example, it is very helpful for politicians to make the

decisions timely if the system provides an overview of

the major public opinions on social media and how

they change over time. Most of the existing works

focus on understanding the analysis results of a data

corpus where each data item is associated with a time

stamp. According to whether the system supports the

analysis of streaming data, we further classified the

existing works on visual dynamic data analysis into

two categories: offline analysis and online analysis.

In offline analysis, all the data are available before

analysis, while online analysis tackles streaming data

that keeps on coming in the analysis process.

Offline analysis. Offline analysis research can be

classified into three categories based on the analysis

tasks: topic analysis, events analysis, and trajectory

analysis.

Understanding the topic evolution of large text

corpus over time is an important topic and attracts

much attention. Most of the existing works adopted a

river metaphor to convey the change of the text corpus

over time. ThemeRiver [97] is one of the pioneer works,

which uses the river metaphor to reveal the changes in

the volume of different themes. To better understand

the content change of a document corpus, TIARA [165,

264] utilizes an LDA model [21] to extract the topics

from the corpus and reveal their change over time.

13
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Fig. 8 TextFlow [58] employs a river-based metaphor to show topic birth, death, merging, and splitting.

However, only observing the volume and content change

is not enough for the complex analysis tasks where

users want to explore the relationship among different

topics and their change over time. Therefore, later

works have focused on understanding the relationships

(e.g., topic splitting and merging) among topics and

their evolving patterns along time. For example, Cui et

al. [58] first extracted the topic splitting and merging

patterns from a document collection by an incremental

hierarchical Dirichlet process model [239]. Then a

river metaphor with a set of well-designed glyphs

was developed to visually illustrate the aforementioned

topic relationships and their dynamic changes over

time. Xu et al. [280] leveraged a topic competition

model to extract the dynamic competition among

topics and the effects of opinion leaders on social media.

Sum et al. [236] extended the competition model to

the coopetition (cooperation and competition) model

to help understand the more complex interactions

among the evolving topics. Wang et al. [260] proposed

IdeaFlow, a visual analytics system for learning the

lead-lag relationships across different social groups over

time. However, the aforementioned works use a flat

structure to model the topics, which hampers their

usage in the era of big data for handling large-scale text

corpora. Fortunately, there are already initial efforts

in coupling hierarchical topic models with interactive

visualization to favor the understanding of the main

content in a large text corpus. For example, Cui et

al. [59] extracted a sequence of topic trees using an

evolutionary Bayesian rose tree algorithm [262] and

then calculate the tree cut for each tree. These tree

cuts are used as the approximations for the topic trees

and displayed in a river metaphor, which also reveals

the dynamic relationships among the topics, including

topic birth, death, splitting and merging.

Event analysis targets at revealing common or

semantically important sequential patterns in event

sequence, which are ordered series of events [94, 112,

168, 176]. To facilitate visual exploration of large scale

event sequence and pattern discovery, several visual

analytics methods have been proposed. For example,

Liu et al. [168] developed a visual analytics method

for clickstream data. Maximal sequential patterns

are discovered and pruned from the clickstream data.

The extracted patterns and original data are well

illustrated at four granularities: patterns, segments,

sequences, and events. Guo et al. [94] developed

EventThread, which uses a tensor-based model to

transform the event sequence data into an n-dimension

tensor. The latent patterns (threads) are extracted

with a tensor decomposition technique, segmented

into stages, and then clustered. These threads are

represented as segmented linear stripes, and a line

map metaphor is used to reveal the changes between

different stages. Later, EventThread was extended to

overcome the limitation of the fixed length of each

stage [93]. The authors proposed an unsupervised

stage analysis algorithm to effectively identify the latent

stages in event sequences. Based on this algorithm, an

interactive visualization tool is developed to reveal and

analyze the evolution patterns across stages.

There are also some works focusing on understanding

movement data (e.g. , GPS records) analysis results.

Andrienko et al. [10] extracted the movement events

from trajectories and then performed spatial-temporal

clustering for aggregation. These clusters are visualized

by the spatio-temporal envelopes to help analysts find

the potential traffic jams in the city. Chu et al. [55]

adopted an LDA model for mining the latent movement

14
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Fig. 9 Kruger et al. [135] enriched the trajectory data semantically. The frequent routes and destinations are visualized in the

geographic view (top), while the frequent temporal patterns are mined and displayed in the temporal view (bottom).

patterns in taxi trajectories. The movement of each

taxi represented by the traversed street names was

regarded as a document. The parallel coordinate was

used to visualize the distribution of streets over topics,

where each axis represents a topic, and each polyline

represents a street. The evolution of the topics was

visualized as topic routes that connect similar topics

between adjacent time windows. More recently, Zhou et

al. [299] treated the origin-destination flows as words

and trajectories as paragraphs, respectively. Therefore,

a word2Vec model was used to generate the vectorized

representation for each origin-destination flow. t-SNE

was then employed to project the embedding of the

flows onto two-dimension space, where analysts can

check the distributions of the origin-destination flows

and select some of them to be displayed on the map.

Besides directly analyzing the original trajectories data,

some other papers try to augment the trajectories

with auxiliary information to reduce the burden on

visual explorations. Kruger et al. [135] clustered the

destinations with DBScan and then used Foursquare

to provide detailed information about the destinations

(e.g. , shops, university, residence). Based on the

enriched data, the frequent patterns were extracted

and displayed in the visualization (Fig. 9), where

the icons on the time axis helped understand these

patterns. Chen et al. [50] mined the trajectories from

the geo-tagged social media and displayed the keywords

extracted from the text content, which helps users

explore the semantics of trajectories.

Online analysis. Online analysis is especially

necessary for streaming data, such as text streams. As

a pioneering work for online analysis of text streams,

Thom et al. [240] proposed ScatterBlog to analyze geo-

located tweet streams. The system uses Twitter4J

to get streaming tweets and extract location, time,

user ID, and tokenized terms in the tweets. To

efficiently analyze a tweet stream, an incremental

clustering algorithm was employed to cluster similar

tweets. Based on the clustering results, spatial-

temporal anomalies were detected and reported to the

users in real-time. To reduce user efforts for filtering

and monitoring in ScatterBlogs, Bosch et al. [26]

proposed ScatterBlogs2, which enhanced ScatterBlogs

with machine learning techniques. In particular, an

SVM-based classifier was built for filtering tweets of

interest, and an LDA model was employed to generate

a topic overview. To efficiently handle high-volume

text streams, Liu et al. [164] developed TopicStream to

help users analyze hierarchical topic evolution in high-

volume text streams. In TopicStream, an evolutionary

topic tree was built from text streams, and a tree

cut algorithm was developed to reduce visual clutter

and enable users to focus more on topics of interest.

Combining a river metaphor and a visual sedimentation

metaphor, the tool effectively illustrates the overall

hierarchical topic evolution as well as how new arriving

textual documents are gradually aggregated into the

existing topics over time. Triggered by TopicStream,

Wu et al. [271] developed StreamExplorer, which
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enables the tracking and comparison of a social stream.

In particular, an entropy-based event detection method

was developed to detect the events from the social

media stream. The events are further visualized in

a multi-level visualization, including a glyph-based

timeline, a map visualization, and interactive lenses.

In addition to text streams, other types of streaming

data are also analyzed. For example, Lee et al. [140]

employed a long short-term memory model for road

traffic congestion forecasting and visualized the results

with a Volume-Speed Rivers visualization. The

propagation of the congestions was also extracted

and visualized, which helps analysts understand the

causality within the detected congestions.

6 Research Opportunities

Although visual analytics research for machine

learning has achieved promising results in both

academic research and real-world applications, there

are still several long-term research challenges. Here,

we discuss and highlight major challenges and potential

research opportunities in this area.

6.1 Opportunities before Model Building

Improving data quality for weakly supervised

learning. Weakly supervised learning builds models

from data with quality issues, including inaccurate

labels, incomplete labels, and inexact labels. Improving

data quality can boost the performance of weakly

supervised learning models [148]. Most of the existing

methods focus on inaccurate (e.g. , noisy crowdsourced

annotations and label errors) data quality issues and

interactive labeling related to incomplete (e.g. , none

or only a few data are labeled) data quality issues.

However, fewer efforts are devoted to the better

exploitation of unlabeled data related to incomplete

data quality issues as well as inexact (e.g. , coarse-

grained labels that are not exact as required) data

quality issues. This paves the way for potential future

research.

First, the potential of visual analytics techniques to

address the incomplete issue is not fully exploited. For

example, improving the quality of unlabeled data is

critical for semi-supervised learning [148, 149], which

is tightly combined with a small amount of labeled

data during the training to infer the correct mapping

from the data set to the label set. One typical

example is graph-based semi-supervised learning [149],

which depends on the relationship between labeled

and unlabeled data. Automatically constructed

relationships (graphs) are sometimes poor in quality,

resulting in model performance degradation. A major

cause behind the poor-quality graphs is that automatic

graph construction methods usually rely on global

parameters (e.g. , the global k value of kNN graph

construction method), which may not be appropriate

for local regions. As a consequence, it is necessary

to utilize visualization to illustrate how labels are

propagated along the graph edges, thus facilitate the

understanding of how local graph structures affect

the model performance. Based on the understanding,

experts can adaptively modify the graph and gradually

create a higher-quality graph.

Second, although the inexact data quality issue is

common in real-world applications [302], it receives

less attention in the field of visual analytics. The

inexact data quality issue refers to the situation where

labels are inexact, e.g. , coarse-grained labels. One

typical example of the inexact data quality issue is the

coarse-grained labels of computed tomography (CT)

scans. The labels of CT scans usually come from the

corresponding diagnosis reports that describe whether

patients have certain diseases (e.g., tumor). For a CT

scan with tumors, we only know one or more slices

in this scan contain tumors. However, we do not

know which slices contain tumors as well as the exact

locations on these slices. Although various machine

learning methods [82, 301] have been proposed to learn

from such coarse-grained labels, they may lead to poor

performance [148] due to the lack of exact information.

Fine-grained validations are still required to improve

data quality. To this end, one potential solution

is to combine interactive visualization with learning

algorithms to better illustrate the root cause of bad

performance by examining the overall data distribution

and the wrongly predicted ones, and develop an

interactive verification process for providing more fine-

grained labels while minimizing expert efforts.

Explainable feature engineering. Most of the

existing work for improving feature quality focus

on tabular or textual data from traditional analysis

models. The features of these data are naturally

interpretable, which makes the feature engineering

process much easier. In addition to these traditional

feature representations, features extracted by deep

neural networks perform better than the handcraft

ones [65, 255]. However, these deep features are

hard to interpret due to the “black box” nature of

deep neural networks. The uninterpretable property

of such features brings several challenges for feature

engineering.

First, the extracted features are obtained in a data-
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driven process, which may not well represent the

original images/videos when the datasets are biased.

For example, given a dataset with only dark-colored

dogs and light-colored cats, the extracted features

only emphasize colors and ignore other discriminate

concepts, like faces and ears. Without a clear

understanding of these biased features, it is hard

to correct them in a comprehensive way. Thus,

an interesting topic for future work is to utilize

interactive visualization to disclose why the features are

biased. The key challenge here is how to measure the

information preserved or abandoned by the extracted

features and visualize them in a comprehensive manner.

Moreover, redundancy exists in extracted deep

features [12]. Removing redundant features can

also lead to several benefits, like reducing the

storage requirement and improving generalization [44].

However, without a clear understanding of the exact

meanings of features, it is hard to judge whether a

feature is redundant. As a consequence, one interesting

future work is to develop a visual analytics method

to convey feature redundancy in a comprehensive way,

allow experts to explore them, and remove redundant

ones for better qualities.

6.2 Opportunities in Model Building

Online training diagnosis. Existing visual analytics

tools for model diagnosing are mostly in an offline

manner that the data for diagnosis is collected after

the training process is finished. They have shown their

capability for revealing the root causes of the failed

training process. However, as modern machine learning

models are becoming more and more complex, their

training process can last for a few days or even several

weeks. Such an offline manner severely restricts the

efficiency of visual analytics to assist model diagnosis.

Given this fact, it is of significant need to develop

visual analytics tools to diagnose the online training

process so that model developers can identify the

anomalous training process and make corresponding

adjustments to the potential issues promptly. This can

save much time in the trial-and-error model building

process. The key challenge for online diagnoses is

to detect anomalies in the training process in time.

While it remains a difficult task to develop algorithms

for detecting anomalies automatically and accurately

in the real-time environment, it will be applicable to

leverage interactive visualization to locate the potential

errors in the training process. Different from offline

diagnoses, the data of the training process will be

continuously fed into the online analysis tool. Thus,

progressive visualization techniques are needed to

produce meaningful visualization results of the partial

streaming data. These techniques can help experts

monitor the online model training process and identify

possible issues rapidly.

Interactive model refinement. Recent works have

explored the utilization of uncertainty to facilitate

interactive model refinement [73, 153, 261, 282]. There

are many methods to assign uncertainty scores to the

model outputs (e.g. , based on the confidence scores

produced by the classifiers), and then different visual

hints can be used to guide users to examine the model

outputs with high uncertainty. Models will re-compute

the uncertainty after updated with the user refinement,

and users can perform the refinement iteratively until

they are satisfied with the results. Furthermore,

additional information can also be leveraged in order

to provide users with more intelligent guidance for

achieving a fast and accurate model refinement process.

However, the room for improving interactive model

refinement is still largely unexplored for researchers. A

possible direction is that since the refinement process

usually requires several iterations, the guidance in the

later iterations can be learned from users’ previous

interactions (e.g. , recommending new guidance learned

from a series of previous user interactions). For

example, in a clustering application, users may define

some ”must-link” or ”cannot-link” constraints on some

instance pairs, and such constraints can be used to

instruct a model to split or merge some clusters

in the intermediate result. In addition, it can be

considered to predict where refinements will be needed

based on some priori knowledge. For example, there

might be some flaws if the model outputs conflict

with some public or domain knowledge, especially

in some unsupervised models (e.g. , Nonlinear Matrix

Factorization and Latent Dirichlet Allocation for topic

modeling), which should be noticed in the refinement

process. Therefore, such a knowledge-based strategy

focuses on revealing unreasonable results produced by

the models, and then users can refine the models by

adding constraints to the models.

6.3 Opportunities after Model Building

Understanding multi-modal data. Existing work

on content analysis has achieved great success in

understanding single-modal data, such as texts, images,

and videos. However, real-world applications often

contain multi-modal data, which is a combination of

several different content forms, such as text, audio,

and images.For example, in the medical scenario,
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a physician diagnoses the patient after synthetically

analyzing multiple kinds of data, such as the medical

record (text), laboratory report (tabular), and CT

scanning (image). When analyzing these multi-modal

data, the in-depth relationships among different modals

can not be well captured by simply combining the

learned knowledge from single-modal models. It is more

promising to employ multi-modal machine learning

techniques and leverage its capability to disclose

insights across different forms of data. To this end,

a more powerful visual analytics system is crucial for

understanding the output of these multi-modal learning

models.Many machine learning models are proposed

to learn the joint representation of multi-modal data,

including natural language, visual signals, and vocal

signals [13, 170]. Accordingly, an interesting future

direction is how to effectively visualize the learned

joint representations among multi-modal in an all-

in-one manner data. An effective visualization will

facilitate the understanding of the multi-modal data

and their relationships. Some classic multi-modal tasks

can also be employed to enhance natural interactions

in the field of visual analytics. For example, in

the vision-and-language scenario, the visual grounding

task (identify the corresponding image area given the

description) can be used to provide a natural interface

to support natural-language-based image retrieval in a

visual environment.

Analyzing concept drift for better performance.

In real-world applications, it is often assumed that the

model mapping function from input data to output

values (e.g., prediction label) is static. However,

as data continues to come, the mapping between

the input data and output values may change in

unexpected ways [171]. Under such a situation,

a model trained on historical data may no longer

work properly on new data. This usually causes

noticeable performance degradation for the application

data that does not match the training data. Such a

non-stationary learning problem over time is known

as concept drift in the literature. As more and

more machine learning applications directly consume

streaming data, it is important to detect and

analyze concept drift and minimize the performance

degradation caused by it [257, 281]. In the field of

machine learning, three main research topics, drift

detection, drift understanding, and drift adaptation,

are developed to analyze concept drift in streaming

data. Machine learning researchers propose many

automatic algorithms to detect and adapt concept

drift. Although these algorithms can improve the

adaptability of learning models in an uncertain

environment, they only provide a numerical value to

measure the drift degree at each time. This makes

it hard to understand why and where drift occurs.

If the adaption algorithms fail to improve the model

performance, the black-box behavior of the adaption

models makes it difficult to diagnose the root cause

of performance degradation. As a result, model

developers need to have tools that intuitively illustrate

how data distributions have changed over time, which

samples cause drift, and how the training samples

and models can be adjusted for overcoming such drift.

This requirement naturally leads to a visual analytics

paradigm where the expert interacts and collaborates

the concept drift detection and adaption algorithm by

putting human in the loop. The major challenges here

are 1) how to visually represent the evolution patterns

of streaming data over time and effectively compare

data distributions between/among time points; 2)

tightly integrate such streaming data visualization with

drift detection and adaption algorithms to form an

interactive and progressive analysis environment with

human in the loop.

7 Conclusions

In this paper, we comprehensively review recent

progress and developments of visual analytics

techniques for machine learning. These techniques

are classified into three groups by the corresponding

analysis stage: techniques before model building,

techniques in model building, and techniques after

model building. Each category is detailed by typical

analysis tasks, and each task is featured by a set of

representative works. By comprehensively analyzing

existing visual analytics research for machine learning,

we also suggest six directions in future machine-

learning-related visual analytics research, including

improving data quality for weakly supervised learning

and explainable feature engineering before model

building, online training diagnosis and intelligent

model refinement in model building, as well as

multi-modal data understanding and concept drift

analysis after model building. We hope this survey can

provide an overview of the visual analytics research

for machine learning, facilitate the understanding of

state-of-the-art knowledge in this area, and shed light

on future research.
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