
1

A Unified Understanding of Deep NLP Models
for Text Classification

Zhen Li, Xiting Wang, Weikai Yang, Jing Wu, Zhengyan Zhang,
Zhiyuan Liu, Maosong Sun, Hui Zhang, Shixia Liu

0.00

0.06

0.13

0.19

0.25

0.31

0.38

0.44

0.50

0.56

0.63

0.69

0.75

0.81

0.88

0.94

1.00 Prediction Score

reuters investor
halliburtonstocks

housing campaign

hurricane
iraq

philippines

retailer tuesday
apax
aug

olympics

intelsat yukos

rejected

oil

refocuses year short kmartvenezuela prices week

googlehp
huygens

apple
microsoft

realnetworksnasa

jeopardizing

iseries

shoppers

sarkdigitalpersona

cnn

wi

driftedsan mediaoneaffect
playboy

you

of by

uil

said the
forests

is

to

at

if

in but

inspired

google
company

draws

microsoft

securities

investors

lows

begin inc

jobs

tech

shares

pool

the of

york

goog

can

toldstill
intorate

rescuegot

says

year

offers
willand

now

from public
expectsstock itsthat

all

selling
reutersweb buytime

startsearch makerlast
industry

bill

off mondayhe
boomsubmit near

but

inspired

parceled
paperwork

seeks

googleinc

time
thought

outpalmsource

sprint

web

its

selling microsoft
company

start india

the

call

saidmore

cool

bid

investors

running
submit

tivo

lastbegin
auction of

maker
searchpublic

can

industry
stores

reutersexpectsthat
onbuy

newoffers off
shareswillyork

fromhelliptheir
initial washisdraws

inspired

but

google
reuters

spending
growth

outletspcs

york

outlook

buy
rockyseeks

debut

dell
offers
highly

goog

inc

said
bidnear

timerunning
market

ok

last
web

company

auction
can

stockthat
its

the of

out newfor
gateway shares

from expects
industryselling
searchbegin will fridayand
start
withtheirpublic two hp up

but

inspired

mckinsey

auction

google

warner

inc
fridaystock

reuters

draws

said
time

tech

offers

microsoftcompany

nortel

stores
growth web

investors
start

pcs

publicoff

oct
ok

hellip
outshares

the

monday
search spending

canlast selling

up

yorkbuy
beginwill asrocky he
where

of
approvalfrom and for

their year near thatdellhighly

but

inspired

reuters
google

corp

end

nortel

dell

unique

hellipscrooge
hp

planner

gateway

lash

stock

gloom

gates

chairman will
stores palmsource
boomoffers auction seeks

investors friday expects

ok

company the growth yorksearch
begin

oil

inc off

its

startinitial sellingbuy upnear
out

microsoft forto on two
said

and highly alsono year
worry

butinspired hpantitrust

google

bill
size

bulletrose
accessories

searchreuters
microsoft

gates go
gavehellip
goog

securities

post
an nortel

its

new tuesday
boom initialdell

the growth
chairmanout spending

forstockweb time

up

he can

publicbegin off
company

start
offers

willauction maker
investors

their
expects

this askingyearand
approval has

0 1 2 3 4 5 6 7 8 9 10 11 12 Layer
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Word Contribution Percentile

Input 1 2 3 4 5 6 7 8 9 10 11

CLS
google

ipo
faces

playboy
slip - up

the
bidding

gets underway
for

google ' s
public

offering
,

despite
last - minute

worries
over

an
interview with

its bosses
in

playboy
magazine

.

CLS
googleipo

ipo
faces faces

faces
playboy playboy

playboy
the the

bidding bidding biddingfor for

public
public public

offering

despite despite

worries
over

overan
an

playboy

magazine

the

public

,
despite

over
interview with
its bossesin

magazine

.

CLS

ipo

google ' s
bidding

google

faces

playboy

slip - up

offering

last - minute
worries

an

Business Sci/Tech(d) (e)Business Sci/Tech Irrelevant

0.0 0.2 0.4 0.6 0.8

Percentage

Predicted Class

G
ro

un
d 

Tr
ut

h

0.954 0.025 0.012 0.008World

0.005 0.995 0.000 0.000Sports

0.009 0.000 0.901 0.089Business

0.000 0.005 0.002 0.993Sci/Tech

World Sports Business Sci/Tech

(c)
(a)

(b)

A

B

C

Fig. 1: DeepNLPVis for analyzing the BERT model on news classification: (a) class view for showing the overall model
performance; (b) distribution view for identifying samples and words of interest; (c) word contribution of selected samples;
(d) sample list; (e) information flow for analyzing a sample by its intra- and inter-word information;

Abstract—The rapid development of deep natural language processing (NLP) models for text classification has led to an urgent need
for a unified understanding of these models proposed individually. Existing methods cannot meet the need for understanding different
models in one framework due to the lack of a unified measure for explaining both low-level (e.g., words) and high-level (e.g., phrases)
features. We have developed a visual analysis tool, DeepNLPVis, to enable a unified understanding of NLP models for text classification.
The key idea is a mutual information-based measure, which provides quantitative explanations on how each layer of a model maintains
the information of input words in a sample. We model the intra- and inter-word information at each layer measuring the importance of
a word to the final prediction as well as the relationships between words, such as the formation of phrases. A multi-level visualization,
which consists of a corpus-level, a sample-level, and a word-level visualization, supports the analysis from the overall training set to
individual samples. Two case studies on classification tasks and comparison between models demonstrate that DeepNLPVis can help
users effectively identify potential problems caused by samples and model architectures and then make informed improvements.

Index Terms—Explainable AI, visual debugging, visual analytics, deep NLP model, information-based interpretation

F

1 INTRODUCTION

Text classification is a fundamental task in natural language
processing (NLP) and has been under rapid development to
assist our everyday communication [1]. In recent years, different
deep NLP models from CNN-based [2], LSTM-based [3], and
Transformer/attention-based [4] have been consecutively proposed
to improve the performance of text classification tasks. However,

along with the improved performance is the increasing complexity
of the model architecture, which poses difficulties for model
developers not only in training the model, but also in debugging
when the performance is not as expected.

For example, the recent BERT model [5] contains hundreds of
millions of parameters. Training such a model from scratch requires
massive data and computing resources that are unaffordable to
most NLP developers. A training schema with pre-training and fine-



2

tuning is thus getting popular. Starting from a pre-trained model
(e.g., a pre-trained BERT), model developers fine-tune the model to
the end classification task with specific input-output designs. They
usually follow two approaches to improve the model performance.
One is to augment the training data and improve the data quality
with the model architecture unchanged. In machine learning, it
has been proposed that “80% data + 20% model = better machine
learning” [6], which demonstrates the importance of data quality.
Label errors, missing samples, and sample bias are all factors that
affect classification performance [7]. The other approach is to make
slight changes to the model architecture. For example, inserting
“adapter layers” between specific layers of the model has been
shown effective in improving model performance [8].

Effective improvement from either of the above approaches
will require the model developers to understand the model’s
working mechanism, and in turn to identify the deficiencies for
informed augmentation of the data and/or adaptation of the model
architecture. Several visualization tools have been developed to
facilitate the understanding of a specific deep NLP model, such
as RNNVis [9] and Attention Flows [10] for RNN-based and
attention-based NLP models, respectively. Our work follows this
direction to assist in understanding deep NLP models for text
classification. However, we argue that a tool for a specific model
may restrict the model developer’s choice of the most suitable
model for a specific task. Currently, there is a trend to revisit deep
learning models [11], and it has been found some simple models
can actually achieve competing performance as more complex
models. Given the high computing demand of pre-trained models,
it would be interesting to know whether simpler models, such as
LSTM or CNN-based models, are potential alternatives at least for
some scenarios in classification tasks. For example, improving the
accuracy of these simpler models will make them deployable on
portable devices with limited computing resources, such as mobile
phones. It thus naturally arouses the interest to revisit different
classification models in NLP. However, due to the diverse model
architectures, this is non-trivial. A fundamental requirement is to
unify the understanding of these models’ working mechanisms.
With this in mind, although our work follows the direction of
developing visualization tools for deep NLP models, it has a unique
focus on a unified understanding across different classification
models. It aims to help model developers better understand the
strengths and weaknesses of different NLP models and make
informed improvements.

We thus develop DeepNLPVis, an interactive visual analysis
tool to help model developers gain a unified understanding of
different NLP models for text classification, quickly identify
problems, and make informed improvements. We propose to
improve the mutual information-based measure in [12] to explain
the information learned by intermediate layers, including both
intra-word information (e.g., word contribution to classes) and
inter-word information (e.g., relationships between words). With
this measure, DeepNLPVis adopts a coordinated multiple-level
visualization connecting the analysis from the overall training
corpus to individual samples and words (Fig. 1). At the corpus-
level, a class view shows the overall model performance on all
classes, from which the user can select two classes to explore the
corpus against predictions on the two classes in the distribution
view. The sample-level visualization supports analyzing a sample
in terms of both intra-word and inter-word information. And the
word-level visualization supports examining words in terms of
word contribution and word meaning. The interactive analysis

enabled by the coordinated visualization helps users explore model
deficiencies and identify the root cause of low performance. The
demo is available at https://bit.ly/2QUF4Pb.

In summary, the main contributions of this work are:
• A mutual-information-based visual analysis tool for efficient

identification and diagnosis of problems in deep NLP models
for text classification.

• An information-based sample interpretation method for si-
multaneously understanding the intra-word and inter-word
information in a unified way.

• A three-level visualization consisting of a corpus-level visual-
ization for quickly identifying samples and words of interest,
and a sample-level and a word-level visualization to disclose
the intra-word and inter-word information and their changes
across layers.

2 RELATED WORK

2.1 Machine Learning for Understanding NLP Models

Existing machine learning methods for understanding deep NLP
models can be categorized into three classes: built-in interpretability
methods, post-hoc model-specific methods, and post-hoc model-
agnostic methods [13], [14]. The first category attempts to design
self-explanatory models. The second category analyzes some
specific architectures in the model, such as the hidden states
or attention heads. The third category interprets the model by
considering model inputs, intermediate layers, and outputs. These
methods are model-agnostic as they do not make assumptions about
the specific model architecture. Our work is relevant to the third
category. Here we briefly review the works along this line.

Many post-hoc model-agnostic methods utilize an easy-to-
interpret model, such as decision trees, to approximate the original
model and explain its behavior [15]. Local Interpretable Model-
agnostic Explanations [16] is a representative work, which trains
a sparse linear model and uses it to explain the black-box model
locally. Recently, Guan et al. [12] proposed a measure to quantify
the information stored in each word. This measure provides
quantitative explanations on the contribution of a word to the
final prediction layer by layer. Compared with existing methods,
the explanations provided by this method are consistent across
different NLP models. Our method extends this unified measure
to help understand which class the word contributes to and the
relationships between words (e.g., phrases). We also leverage
interactive visualization to visually explain the aforementioned
word-related information across layers. This helps users quickly
identify unusual words/phrases that lead to low performance.

2.2 Visualization for Understanding NLP Models

Existing visualization methods for visually understanding machine
learning models can be categorized into two classes: domain
irrelevant [17], [18] and domain specific [19], [20], [21], [22],
[23], [24]. Our work is in the second category with a focus in
the NLP domain, which enables an in-depth understanding of the
working mechanism of the model training process. Thus, we briefly
review the works along this line.

Earlier efforts focus on utilizing simple and static diagrams,
such as heatmaps [25], [26], to demonstrate which input words
play important roles in model prediction. Later efforts employ
interactive visualization to analyze the intermediate layers of the
models, such as hidden states and attention mechanisms [7], [27].

https://bit.ly/2QUF4Pb


3

0% 20% 40% 60% 80% 100%

F7. Model-Specific
F6. Layer

F5. Word-U
F4. Word-I

F3. Sample-U
F2. Sample-I

F1. Overall

Very Important Important Moderately Important
Slighty Important Unimportant

Fig. 2: Importance of different functions. Sample-I (or Word-I)
refers to the identification of samples (or words) of interest, and
Sample-U (or Word-U) denotes understanding a sample (or a word).

Ming et al. [9] introduced a visual analysis method for interpreting
hidden states of RNNs based on their expected response to the input.
Strobelt et al. [3] developed LSTMVis to explain the hidden state
changes and identify similar examples. RNNbow [28] visualizes
the gradient flow in the training process of RNNs to investigate the
learning behavior of a model. Seq2Seq-Vis [29] visually analyzes
the five black-box stages of the machine translation process. The
attention mechanism is widely used in visual model explanation due
to its high interpretability. Accordingly, RetainVis [30] leverages
the attention mechanism to explain how predictions are made and
supports the modification of the input or the model to conduct what-
if analysis. Tenney et al. [31] developed a language interpretability
tool, which utilizes the attention mechanism and salience maps to
provide a comprehensive understanding of model behavior. More
recently, Derose et al. [10] developed Attention Flows to trace and
compare the attention heads in a BERT model. The system supports
both single model analysis and comparison between pre-trained
and fine-tuned models.

The aforementioned works have achieved considerable success
in understanding deep NLP models. However, they mainly focus
on a specific type of NLP models (e.g., RNNs or attention-
based models). In comparison, we have developed a unified
method for understanding different types of NLP models for text
classification. Our method enables a deeper understanding of the
capabilities of different classification models by revealing the word
contribution and word relationships at different layers. A multi-
level visualization is also carefully designed to help users quickly
identify the samples and words of interest in the context of the
overall data distribution and model prediction.

3 REQUIREMENT ANALYSIS

3.1 Survey on Practices of Building Deep NLP Models
We conducted a questionnaire to better understand the current
practices of NLP model developers and the key functions they need
for efficiently developing deep models for text classification.
Designing the questionnaire. The questionnaire was designed and
iteratively refined with five model developers, who have varying
experience (from one year to eight years) in NLP. We conducted a
45-60 minute semi-structured interview with each of them. In the
interview, we first asked the model developers to introduce his/her
current practices and difficulties. Then, we explored the functions
that s/he needed for better understanding and debugging a model.
Their feedback was summarized to create the questionnaire.
Conducting the questionnaire. The questionnaire was distributed
to 1) students in three NLP groups of a top university and 2)
NLP model developers in a major technology company. Out of the

46 returned questionnaires, eight (17.4%) were discarded due to
incomplete responses. Among the participants, 21.1% had less than
1-year experience in NLP, 44.7% had 1-3-year experience, 28.9%
had 3-5-year experience, and 5.3% had 5-10-year experience. The
NLP models they used include Pre-trained Model such as BERT
(81.6%), Transformer (73.7%), RNN (52.6%), and CNN (36.8%).

Current practices and difficulties. A majority of the partici-
pants understood and debugged NLP models by investigating the
training loss (89.5%), logging intermediate results (84.2%), and
observing the changes in model accuracy (76.3%). Only 34.2%
of them leveraged tools that were specifically designed for model
understanding, e.g., Tensorboard or BertViz. They commented that
it was difficult to use current tools for identifying problems in the
training data, e.g., incorrect labels and uneven data distribution
(78.9%). It was also difficult to understand why a model could not
correctly predict the labels for certain samples (50.0%) and why the
model incorrectly understood certain words (28.9%). In addition
to the difficulty in understanding and debugging a single model,
the participants also expressed the needs to effectively compare
different models. On average, they experimented with five models
in the most recent project. Many participants have shown interest
in a tool that can help investigate NLP models in a unified way
and compare the models effectively. We asked them to rate their
interest according to a 1-5 Likert scale, and 84.2% of participants
returned a rating of 4 (interested) or 5 (extremely interested).

Key functions needed. We then summarized the key functions
that help effectively develop NLP models and asked the participants
to rate how important each function is based on a 1-5 Likert scale (1:
unimportant, 5: very important). Fig. 2 shows the rating distribution
of different functions. More than 80% of participants considered
examining the overall performance and model behavior on the
training data (F1) as (very) important. The participants were also
eager to understand how samples and words contribute to the
model performance. Specifically, more than 70% of participants
agreed that it was (very) important to identify key samples (F2) and
words (F4) for understanding and debugging a model. Over 70% of
participants also expressed the need to deeply understand how each
sample (F3) or word (F5) affects the model prediction. Among
the information about model architectures (e.g., layers, neurons,
or recurrent cells), analyzing how a model behaves across layers
(F6) attracted the most attention. 63.2% of participants considered
understanding layer-wise evolution to be (very) important. In
comparison, investigating neurons or model-specific architecture
(F7) (e.g., specific activation function, recurrent cell, convolution
layer) was not frequently cited by the participants.

3.2 Design Requirements

We further conducted interviews with five experts (E1-E5) selected
from the 38 questionnaire participants. The experts are selected
to ensure that they have different levels of expertise and work on
various NLP models. In particular, E1 has 1-year experience in
NLP, E2 and E3 have 3-year experience, E4 has 5-year experience,
and E5 has 10-year experience. All experts are familiar with BERT
and Transformer. E4 and E5 also have experience in training LSTM
and CNN. Based on the questionnaire survey and interviews, we
distilled three-level requirements: corpus, sample, and word.

The corpus-level requirement aims to help users obtain a quick
overview of the model behavior (F1).

R1. Exploring how model prediction scores distributed over the
dataset. According to the questionnaire, most model developers



4

considered understanding the overall model behavior and perfor-
mance an essential step for analyzing NLP models. As the final
output of the model, prediction scores are a major signal of its
behavior [17]. To obtain an overview of the model performance,
E1 to E5 agreed that it was essential to show the distribution of
prediction scores over the dataset. For example, E1 said, “I would
like to see whether the model makes mistakes on a particular set of
similar samples or on diversified samples.”

The sample-level requirements reflect users’ need to identify
the samples of interest (F2) and analyze them (F3) in a unified way.

R2. Identifying samples that are essential for understanding
and debugging the model. A common need expressed by the
questionnaire participants is to find samples that are useful for
model understanding and debugging (F2). Such samples of interest
can be characterized from multiple aspects. For example, checking
the samples for which the model makes a wrong prediction can help
quickly debug the model (E1–E5). Investigating the samples that
are close to the decision boundary can help increase model robust-
ness [32]. Discovering the representative samples that are similar
to many samples may shed light on why the model achieves good or
bad performance. Moreover, the experts required a way to identify
the samples of interest from the word perspective, e.g., finding
samples with a word that the model fails to correctly understand.

R3. Revealing how NLP models learn low- and high-level
features of a sample across layers in a unified way. After identifying
the samples of interest, the experts needed to understand how the
model processes the samples across layers and why it makes a
certain prediction for the samples (F3, F6). This allows them to
figure out the underlying working mechanism of the model, which
is important for model understanding and debugging. Most existing
tools help reveal important words (low-level features) in a sample.
In addition to the low-level features, the experts are also interested
in the high-level features learned, e.g., whether the model can
correctly understand sentence structures (E1-E4). For example, E3
said, “It is interesting to see whether a model judges the sentiment
of a long compound sentence by considering the word relationships
(e.g., phrases) or simply by counting positive and negative words.”
In addition, to facilitate model comparison, the experts noted that
it was necessary to provide consistent results for different models.

The word-level requirements focus on identifying the words of
interest (F4) and analyzing these words (F5) in a unified manner.

R4. Identifying the words that are important for understanding

and debugging the model. As an NLP dataset typically contains
tens of thousands of words, it is very difficult for a user to check
each word manually and decide which word is important for model
understanding and debugging. Accordingly, the experts required
a method to help them quickly identify the words of interest (F4),
e.g., ambiguous words or words that contribute the most to model
prediction (E1-E5).

R5. Revealing how the model understands the meaning of a
word by considering the context. After identifying the important
words, the experts wanted to further investigate how the words
affect the model prediction (F5), so that they can judge whether the
model understands the meaning of the words in a correct way (E2-
E5). Instead of considering each word independently, most NLP
models consider a word by simultaneously modeling its context
(the related words in the same sample). To better understand how a
word impacts a model, the experts are interested in knowing more
about the contextual information of the word. For example, E4 said,
“I would like to see whether the model can correctly distinguish
different meanings of like based on other words in the sentences.”

4 DEEPNLPVIS

4.1 Overview
The large amount of NLP-model-related data, such as samples,
words, and information-based measure data, makes it difficult
for users to identify the most informative information for model
understanding. To tackle this issue, we have developed a multi-
level visualization and combined it with a unified information-based
measure for understanding a deep NLP model from the perspectives
of the corpus, samples, and words.

As shown in Fig. 3, the information-based measure, including
intra-word information and inter-word information, is first extracted.
Then based on the extracted measure, the three-level visualizations
are seamlessly coordinated together and support an iterative
analysis workflow for a unified understanding of model training
behaviors. The corpus-level visualization visually illustrates 1)
the overall model performance of all classes in a confusion matrix
(class view); 2) the training samples of the two selected classes
from the class view and the corresponding important keywords
in a hexagonal heatmap (distribution view). This visualization
enables quick identification of the classes, samples, and words of
interest (R1, R2, R4). Selected samples are displayed in the sample-
level visualization, and their associated words are displayed in

Text Data

NLP Model
Sample List Information Flow

Word Contribution Word ContextDistribution View

Word-Level

Sample-LevelCorpus-Level

Class View

Information-Based 
Measure

google

hp
realnetworks

microsoft
greece gov

phelps
news

reuters
oil

monday

housing
york

nasa

investor

Intra-Word Information

Inter-Word Information Predicted Class

G
ro

un
d 

Tr
ut

h

0.954 0.025 0.012 0.008World

0.005 0.995 0.000 0.000Sports

0.009 0.000 0.901 0.089Business

0.000 0.005 0.002 0.993Sci/Tech

World Sports Business Sci/Tech

microsoft
report

investor

housing
microsoft

company

google
reuters

apple
iraq

corp

an

they
ofthe

just
year

home

inc
news

nasa

reuters

an
they the

aug

just

report
monday

iraq
news

reuters
microsoft

housing

mart
year just

Layer 1 Layer 6 Layer 12

news
inc

Layer 1 Layer 6 Layer 12

like

like

like …
like_it

look_like

like

Fig. 3: The analysis workflow supported by three coordinated visualizations at different levels.



5

C1Class

Confusion-based selection

C2 Ck

<Cp,Cq>

Normalization
s = sp / (sp + sq) Prediction score s

...

1.00

(k classes)

Assign to Cq Assign to Cp 

Between-class analysis

Fig. 4: The analysis of multi-class classification is achieved by an
iterative between-class analysis.

faces slip - upIPO Sample

Polarity

1.0

0.4

0.6
 

Contribution

0

+0.2

PlayboyGoogle

with “Google”

without “Google” Class Business

P
rediction score

Class Sci/Tech

Learned phrase
Non-adjacent relationship 

Contribution to the 
prediction

Contributing more to
the selected class Sci/Tech

(a) Inter-word information

(b) Intra-word information

A.
B.

C.

D.

Fig. 5: The visual explanation of intra- and inter-word information.

the word-level visualization for closer examination. For example,
users can identify the samples with wrong predictions and words
with higher contribution values by using the sample list (R2) and
word contribution view (R4). Then for each sample, users can
explore the relationships between words and how they form and
change across layers (e.g., formation of phrases) in the information
flow (R3). They can also analyze the word of interest in the context
of relevant words with the word context view (R5).

4.2 Information-Based Interpretation
We propose an information-based interpretation method for iden-
tifying the key information used by an NLP model for prediction.
Without loss of generality, we introduce how to interpret a multi-
class classifier. When analyzing the performance of a classification
model, the experts usually start with an overall class-level analysis,
and then perform the between-class analysis. Inspired by this
observation, we simplify the analysis of multi-class classification
into an iterative between-class analysis, as illustrated in Fig. 4.
In particular, the users first select two classes (e.g., Cp and Cq),
based on the confusion matrix for k classes in the class view. We
then remove the impact of the unselected classes by computing
a normalized prediction score s = sp/(sp + sq), where sp and
sq are the original prediction scores for Cp and Cq. Normalized
prediction score s helps understand whether the model is confident
or confused with respect to Cp and Cq: a large s above 0.5
indicates a confident prediction of Cp, a small s below 0.5 indicate
a confident prediction of Cq, and a value of s around 0.5 indicates
that the model confuses the two classes in terms of the sample. The
goal of our interpretation method is to understand what information
the model leverages for deciding the prediction s.

The information is divided into two categories: intra-word
and inter-word. Intra-word information helps analyze how each
single word contributes to the sample prediction, and inter-word in-
formation aims to capture the relationships between words (Fig. 5).
Recently, Guan et al. [12] proposed a unified information-based

measure to estimate the contribution of the word to the prediction

(Fig. 5C), which partially addresses the problem of analyzing
intra-word information. Given a sample X = (w1,w2...,wn) and
its prediction score s, the contribution of the i-th word wi at
the `-th layer is measured by the amount of information that is
passed from layer l to the final prediction. It is computed as
mutual information: MI(h(`)(wi);s), where h(`)(wi) is the latent
representation of the i-th word of the sample at the `-th layer.
For models where there exist no 1-to-1 association between the
latent representations and input words (e.g., CNN [2]), h(`)(wi) is
set to the concatenation of all hidden representations affected by
wi. The mutual information can be computed efficiently by using
perturbation-based approximation [12]. The basic idea is to perturb
h(`)(wi) by adding a Gaussian noise εεε i and measure the magnitude
of change in the prediction score s:

∆si = Eεεε i∼N(0,σ∗i I)
φ(h(`)(wi)+ εεε i)− s

σs
. (1)

Here, φ(·) is the prediction function represented by the layers
after l and satisfies s = φ(h(`)(wi)). The perturbation εεε i is a noise
sampled from the Gaussian distribution N(0,σ∗i I), where σ∗i is
the optimal standard deviation computed by using the maximum
likelihood estimation loss [12], I is an identity matrix, and σs is the
standard deviation of s. A larger magnitude change |∆si| indicates
a larger contribution of the word (Fig. 5C).

Although this measure can compute the absolute value of
word contribution, it fails to provide information for understanding
the polarity of the contribution. Moreover, it fails to capture
the relationships between words (inter-word information). Here,
the polarity indicates towards which class the word or word
combination (e.g., phrase) contributes to the prediction, given
two classes selected from the class view (Fig. 5D). The polarity is
important for identifying the root cause for the confusion between
the two classes. For example, the sample in Fig. 5 is misclassified
to “sci/tech” because the model considers “google” as a word
related to “sci/tech” rather than “business”, even though “google”
is mentioned together with “ipo.” In addition to polarity, another
important type of information is inter-word information, which is
useful for detecting high-level features learned by the model, such
as phrases (Fig. 5A) and non-adjacent word relationships (Fig. 5B).
Next, we introduce how we extend the information-based measure
to learn the polarity of the contribution and inter-word information.

The polarity of the word is measured by the sign of change
in the prediction score with the existence of that word (Fig. 5D).
Specifically, ∆si > 0 means that removing the i-th word increases
the prediction score s, which indicates the existence of wi
contributes to assigning a sample to class Cq. Thus, wi is a Cq-
relevant word. ∆si < 0 means that wi is a Cp-relevant word. To
increase the robustness of the method, we further use a margin
ξ > 0 to extract the most relevant words. ∆si > ξ , ∆si < −ξ ,
or −ξ ≤ ∆si ≤ ξ mean that word wi is a Cq-relevant word, Cp-
relevant word, and class-irrelevant word. A good value of ξ should
well differentiate class-relevant and -irrelevant words. For example,
words like “ipo” and “spending” should be considered relevant with
“business,” words like “search” and “gates” should be considered
relevant with “sci/tech,” and words like “time” and “can” should
be class-irrelevant. We experiment with seven datasets and find
that the best value for ξ usually increases with increasing text
length (see supplement for detailed results). We suspect that this is
because for longer text, the information is scattered across more
words, resulting in a larger variance of mutual information and thus



6

the requirement for a larger margin ξ . Since the experts usually
use datasets with short texts, we set the value of ξ in the system
to 0.02, which typically works well for short text whose average
number of characters is smaller than 300. We also allow users to
interactively change the value of ξ for a given dataset.

The inter-word information reveals how an NLP model models
the phrases in a sample and learns the relationships between
non-adjacent words (Fig. 5(a)). Although different types of neu-
ral networks model word relationships in different ways, (e.g.,
Transformer uses self-attention and CNN leverages convolutional
kernels), they all embed the learned relationships into the contextual
word embedding [33]. For word wi, each model identifies its
most relevant words (context) and encodes them into the latent
representation h(`)(wi). Based on this, we probe into the learned
phrases and non-adjacent relationships by analyzing the word
information contained in h(`)(wi). Our method for extracting the
inter-word information consists of three steps:
Step 1. Computing context vector. The context vectors of words
help identify word clusters (phrases) based on the information each
word absorbs. For example, at layer 1, each word only contains
information about itself (Fig. 6(a)). Later, the words (e.g., “good”
and “movie”) absorb information from each other, and their context
vectors become more similar (layers 4 and 7 in Fig. 6(a)). The
context vector c(`)i of word wi is created by decomposing the word
information contained in h(`)(wi): c(`)i j = MI(w j,h(`)(wi)). Here,

c(`)i j reveals how much information of the j-th input word is used
in the contextual word embedding of the i-th word.
Step 2. Extracting the learned phrases. The learned phrases are
extracted by clustering the context vectors (Fig. 6(b)). We employ
the agglomerative clustering [34] to cluster adjacent context vectors
at each layer. To improve stability, the clustering result of layer
` is utilized to initialize the clusters at layer `+ 1. As shown in
Fig. 6(b), the clustering allows us to find phrases extracted by the
model, e.g., “the original” at layer 4 and “a good movie” at layer 7.
Step 3. Extracting non-adjacent word relationships. In addition to
showing how adjacent words form phrases, we also consider the
interactions between non-adjacent words. Taking the sample in
Fig. 6(c) as an example, “n’t” interacts with “good” even though
they are non-adjacent. This interaction can be quantified by using
mutual information: e(`)i j =MI(h(`)(wi);h(`+1)(w j)), where i and

j are the indices of two non-adjacent words at layer `. A large e(`)i j
reveals that a great deal of information has been passed from the
i-th word to the j-th word at layer `+1.

4.3 Three-Level Visualization
The three-level visualization enables users to smoothly navigate
from the overall performance at the corpus-level to the detailed
information at the sample- and word-level.

4.3.1 Corpus-Level Visualization
The corpus-level visualization contains two parts: a class view
to reveal the overall model performance on all classes and a
distribution view to explore the prediction distribution over the
selected classes from the class view and identify important samples
and words for further analysis.

A confusion matrix is employed in the class view (Fig. 1(a)),
where each column represents the samples in a predicted class,
each row represents the samples in an actual class, and the
percentage of samples displayed in each cell depicts the confusion
between two classes.

For the distribution view, the Squares visualization [17] is a
straightforward solution to visually convey the desired information.
Although Squares can well show the model performance in the
context of samples, it fails to disclose the similarity relationships
between samples. Understanding such relationships are critical for
identifying important samples, such as representative samples and
outliers in each class, for further investigation.

To tackle this issue, we have developed a hexagonal heatmap
(Fig. 1(b)), which integrates the prediction score (y-axis) with the
one-dimensional t-SNE projection [35]. Since the users require to
examine the similarity relationships between samples, we employ
the t-SNE projection. We choose this technique because of its
effectiveness in preserving the neighborhoods and clusters of
samples [36]. The one-dimensional t-SNE projection projects the
sample embedding in the last hidden layer of the model onto the
x-axis. The sample color encodes the class of the sample. For
example, in Fig. 1, orange and blue encode the “business” and
“sci/tech” news, respectively. In the hexagonal heatmap, a blue
hexagon represents a set of true-positive samples, an orange
hexagon represents a set of true-negative samples, a blue cross

represents a set of false-negative samples, and an orange cross
represents a set of false-positive samples. The darker the sample

color of a hexagon/cross is, the more samples it represents. To
provide a comprehensive overview of how samples distribute over
prediction scores (y-axis), we bin them into 16 consecutive stripes
with an interval of 0.0625. Each stripe contains a pie chart on the
right to illustrate the class distribution over the samples.

A group of representative words is placed on the other side
in a layout close to the samples. Different colors represent words
that are relevant to different classes, and gray represents class-
irrelevant words. The size of each word encodes its importance to
the model prediction. In NLP, the term frequency–inverse document
frequency (TF-IDF) weighting scheme is widely used to measure
how important a word is to a document [37]. This weighting scheme
assigns higher weights to the words whose occurrence is frequent
in a small number of documents, but rare in the other documents
of the corpus. Inspired by TF-IDF, we compute Importance(w),
which measures how important a word is to a model in a corpus
by 1) its term frequency tf(w) in the corpus; and 2) its average
contribution over the associated samples, Contribution(w):

Importance(w) = log(tf(w)+1.0)∗Contribution(w), (2)

where the first term is the term frequency of word w in the document
collection. As the tf values span a large range, a logarithmic
operation is applied to normalize the frequency values. All the tf
values are also increased by 1 in the log normalization to avoid
zero output. The second term measures the contribution of w to the
model prediction. Accordingly, a large importance value is attained
by a high term frequency and a high contribution score. Such a
weighting method tends to filter out common words with little con-
tribution to the final prediction or rare words with low frequency.

To explore the overall model behavior at the corpus level, rich
interactions are designed. For example, when a user finds a stripe
of interest, s/he can click to enlarge the stripe and examine at a
finer scale with more keywords.

4.3.2 Sample-Level Visualization
The sample-level visualization consists of two coordinated compo-
nents: a sample list and an information flow (Fig. 1).

The sample list (Fig. 1(d)) allows users to examine multiple
samples in terms of their text content, class labels, and prediction



7

Layer 1 Layer 4 Layer 7

good movie

n’t
a good movie

the original
2
(4)

Layer 1 Layer 4 Layer 7 Layer 1 Layer 4 Layer 7

the
original

was
n
‘
t
a

good
movie

the
original

was
n
‘
t
a

good
movie

Fig. 6: Illustrating the learned phrases and non-adjacent word relationship of a sample.

scores. Sorting by these attributes makes it possible to identify
the samples of interest from multiple perspectives (R2). The list is
coordinated with other visualizations. For example, the samples in
the list will be updated according to the selected sample hexagons
or words in the corpus- or word-level visualizations. Users can
choose a sample from the list and perform a deeper analysis of the
word relationships and their changes by using the information flow.

The information flow (Fig. 1(e)) facilitates users to analyze
how NLP models process a sample through layers in a unified way
(R3). The design is inspired by storyline visualization [38]. We
introduce the visual encoding and layout algorithm below.
Visual encoding. As shown in Fig. 6(c), in the flow visualization,
each word is represented by a line. The intra-word information
is encoded by the line width and colors. A wider line indicates
that the word contributes more to the final prediction. The color
of the line indicates which class the word contributes to (polarity).
Additionally, we highlight two types of important changes along a
line. First, if a word contributes little to the final prediction after
layer `, we will end the line with . Second, we highlight the
class change on a line by using glyphs and . The inter-
word information includes the learned phrases and non-adjacent
word relationships. For the learned phrases, we use the distances
between lines to represent the distances between word context
vectors. In this way, words that belong to a phrase are naturally
placed close to each other. The clusters are further highlighted by
using a background area (Fig. 6A), the color of which is determined
by the primary color of the lines. The relationships between non-
adjacent words are encoded by the curves that connect different
lines (Fig. 6B). The width of a curve from word i at layer ` to
word j at layer `+ 1 is determined by mutual information e(`)i j
(Sec. 4.2). A thicker curve indicates a larger contribution from
word i to word j. To avoid visual clutter, we only display the most
important curves. A curve is shown if 1) its weight e(`)i j is among
the top 5%, or 2) it is useful for illustrating the color/width change
of a line. For example, the curve displayed in Fig. 6B is helpful
for explaining why the word “good” becomes negative at layer 6,
which is caused by “good” absorbing the information of “n’t.”
Layout algorithm. The layout of the storyline needs to preserve
both stability and readability [38], [39]. To achieve this goal, we
formulate the layout as a constrained optimization problem.

Denote the y-coordinate of word i at layer ` as y(`)i . Stability
prevents the y-coordinate of a line from changing dramatically
when its context vector does not change much. This ensures that
the wiggles of the line, which easily draw users’ attention, are
meaningful and worth investigating. We consider two types of
stability losses: a continuous loss (y(`)i − y(`−1)

i )2 and a discrete

loss I(y(`)i 6= y(`−1)
i ). I(·) is an indicator function with I(true) = 1

and I(false)= 0. While the continuous loss penalizes large changes,
the discrete loss limits the number of line wiggles. Readability
measures how clear and easy it is to understand the relationships
between words in a sample. In addition to the phrase relationships
between adjacent words, the order of words is also important
for many NLP tasks. For example, isn’t he lovely and he isn’t
lovely have different sentiments. As a result, readability requires
that 1) the distances between lines accurately reveal the distances
between word context vectors; and 2) the order of words in a
sample is preserved. Accordingly, readability is maintained by
minimizing the loss (||y(`)i − y(`)i−1|| −D(`)

i )2 and satisfying the

constraint y(`)i ≥ y(`)i−1, for ∀i, l, where D(`)
i = ||c(`)i − c(`)i−1|| is the

distance between word context vectors.
Based on the analysis of stability and readability, we formulate

the storyline layout as a constrained optimization problem:

min
{y`i |∀i,`}

M

∑
i=1

L

∑
`=1

C(i, `), s.t.,y(`)i ≥ y(`)i−1, ∀i, `

C(i, l) = α[(y(`)i − y(`−1)
i )2 +β I(y(`)i 6= y(`−1)

i )]

+(1−α)(||y(`)i − y(`)i−1||−D(`)
i )2

(3)

The first two terms of C(i, l) maintain stability, and the third term
maintains readability. M is the number of words in a sample, and
L is the number of layers in the NLP model. α ∈ [0,1], β > 0
are hyperparameters that balance different terms in the loss. In our
implementation, α = 0.4, and β = 5.

The constrained problem defined in Eq. (3) can be solved by
dynamic programming in pseudopolynomial time.

4.3.3 Word-Level Visualization
The word-level visualization consists of a word contribution view
and a word context view.
Word contribution view. The word contribution view helps
identify the words and layers of interest based on the words’
contribution to different layers in the model (R4).

Visual encoding. As shown in Fig. 1(c), the x-axis denotes
layers, and the y-axis corresponds to the word contribution
percentiles. Words are divided into 10 equal-size groups based on
their contribution at each layer. The groups with larger contributions
are placed higher on the y-axis. In this way, the visualization reveals
whether the model leverages the correct words for prediction. For
example, we can debug a news classification model by checking
whether class-relevant words like “antitrust” and “google” are
placed on the top at the last few layers, and other words like “this,”
and “has” are placed at the bottom.



8

Following the corpus-level visualization, the size of a word
encodes its importance. The color of a word is determined by
its dominant polarity in its associated samples. A pie-chart-based
glyph is used to show the distribution of word polarity in all
the associated samples. To reduce visual clutter, we only show pie
charts for the top five most important words at each layer.

Layout. The words are placed based on the sweepline algo-
rithm [40], which places important words close to the centroid of a
given contour. We slightly modify the algorithm by placing each
word w close to its desired position. This is achieved by replacing
the centroid with (x̃(`)w , ỹ(`)w ). Here, ỹ(`)w is the contribution percentile
of w. To ensure stability, we try to maintain the relative position
of x̃(`)w . If the word usually appears at the left (or right) side of
previous layers, we prefer to place it at the left (or right) side of
the current layer.

Interaction. This view is coordinated with other views to
understand the model from the word perspective. For example,
the words displayed will be updated upon the selection of samples
or words in other views. We can hover over a word to inspect its
polarity distribution over samples with a pie chart and highlight its
appearances across layers. To help identify interesting words, we
enable two types of automatic pattern searching functions based on
the the experts’ suggestions. Trending button (or ) in the top
right corner is used to show the words whose contributions keep
decreasing (or increasing) through layers (Fig. 7C or D).
Word context view. The word context view facilitates the under-
standing of a word by revealing how the model processes it based
on its context (R5).

The context of word w is depicted by a list of words that are
considered to be the most relevant to it according to the NLP
model. The word context view illustrates the context of w across
different samples and layers. Fig. 7(c) shows an example context
visualization of the word “like.” Each rectangle in the visualization
represents a cluster of samples with similar context words for “like.”
The size of the rectangle encodes the number of samples in the
cluster, and the color encodes the majority polarity of “like” in
these samples. For example, the meaning of “like” in cluster F
at layer 11 is “favor,” and its sentiment is mostly positive (e.g.,
“if you like” and “might like”). Phrases, such as “if you like”
are extracted by identifying words that are both relevant and
adjacent to “like” in the samples, and the font size is used to
encode the importance score. The sample clusters are computed
by performing agglomerative clustering [34] on the word context
vectors (Fig. 6(a)). We initialize the clusters at each layer by using
the clusters extracted in the previous layer to maintain stability.
The cluster positions are determined by using the directed acyclic
graph layout algorithm employed in TextFlow [41]. The width
of the edge encodes the proportion of samples that come from
the previous cluster. To reduce visual clutter, we only show the
results of representative layers, whose similarity with the previously
selected representative layer is smaller than a threshold.

The word context view is coordinated with other views during
the analysis. It is triggered when a user selects a word in the
distribution view or the word contribution view. By selecting a
rectangle in the word context view, the corresponding samples are
highlighted in the distribution view and sample list as well.

5 CASE STUDIES

We conducted case studies involving three tasks with experts E3
and E4. E3 is interested in understanding and diagnosing BERT

models for binary/multi-class classification tasks, and E4 would
like to compare different models using DeepNLPVis.

In conducting the case studies, DeepNLPVis requires the inter-
and intra-word information for each sample in the training set.
The calculation for the whole set is time-consuming and is thus
carried out offline. All the other required data can be obtained
with real-time processing (within one sec), and are thus calculated
online.

5.1 Binary Sentiment Classification
In this case study, E3 carried out the sentiment classification task
on the Stanford Sentiment Treebank (SST-2) [42], which consists
of sentences from movie reviews and human annotations of their
sentiments. The sentiments are of two classes: positive and negative.
The GLUE SST-2 splits [43] were used for the training (67,349
samples), validation (872 samples), and test (1,821 samples) sets.
The BERT model, as the most widely used NLP model, was
applied as the baseline and achieved 93.23% accuracy. Starting
with the BERT model, E3 emphasized on gaining a comprehensive
understanding of the model’s working mechanism, which would in
turn facilitate the subsequent model diagnosis.

5.1.1 Understanding
Understand the overall performance (R1, R4). E3 began the
analysis by examining how the prediction scores were distributed
over the data in the distribution view (R1). He immediately noticed
the long-tailed distributions (Fig. 7(a)), showing that most samples
were predicted with high confidence (vertically away from the
center), while those with low confidence were horizontally closer
to the center. E3 also noticed the keywords extracted from the
positive and negative samples had relevant sentiments. The overall
distribution in the distribution view gave E3 confidence in the
model’s performance. He then turned his attention to the word
contribution view (Fig. 7(b)) to analyze how the model understands
the words at different layers (R4). He noticed that with the layers
going deeper, the model recognized more words with sentiment
tendencies, i.e., more colored words. Moreover, at layers 11
and 12, words with strong positive or negative meanings (e.g.,
“absurd,” “laughs,” “charm”) contributed highly. These sentimental
words replaced those class-irrelevant ones (e.g., “flick,” “screen,”
“filmmaking”) in previous layers.

Analyzing how the contributions of words changed through
the layers (R4) is helpful to understand the model’s working
mechanism. Thus, E3 clicked the trending hint buttons to display
the top two words with the largest contribution changes (decreasing
or increasing). He noticed that the contributions of “movie” and
“film” decreased slowly until layer 10 and then decreased rapidly
(Fig. 7C). While the contributions of “laughs” and “care” increased
rapidly in the last few layers (Fig. 7D). This observation verifies
his hypothesis that the BERT model, as a fine-tuned model, has the
early layers more dedicated to learning transferable representations
of language that are invariant to the prediction task, while the
deeper layers paying more attention to words that are relevant to
the prediction task [44].

The word contribution view gave E3 an overview of how
the model gradually adapted to the tasks through the layers. To
get a deeper understanding of the model, E3 then analyzed how
it understood the meaning of individual words and processed
individual samples.
Understand words in context (R5). Some keywords in the
distribution view aroused E3’s attention. He noticed that the word



9

charm
laughs

absurd

movie

film

just

it

entertaining

characters

funny

and

is

the

story
performances

to
of

as

drama

good

plot

filmmaking

bad

enjoy

humor

in

this

too

visual

cliches

audience

feel

more

that

like

action

director

make
very

thriller

hollywood

workthan

an

flick

be

willhas

about by

silly

or
his

ca

scary

charmlaughs

absurd

movie
film

comedy
funny

characters

performances

cliches

drama

flick
thriller visual

and

humor

enjoy

plot

story

it

the

director
just

script

actingaction

of

painfully

is

to

comic

bad

silly

cast actors
loveheart good

in

as

that

work
this

seems

for
with an

wit

than one
make

about so
havehis

laughs
charm

absurd

movie
comedy

entertaining

film

flick

funny

performances

thriller

characters

cliches visual

plot

humor drama

script

just

story

silly

care

action
cast

yarn

genre

and

good

it

work
love

tale

suspense

is

bad like
as

ca

feel more than

art

the

to
of

year

that make
one

about be withbyhave

laughs
charm

absurd

movie
comedy

filmmaking

film
entertaining

flick

characters

thriller

care

plot

story

funny

silly

just

drama

director

script

enjoy

yarn

action

bad

heart
work

hard

good seemslove
best

rare

like

ca

spy

old

watch

lazy

year comelife too
little butnoit out notand

youat
the ofbe by

laughs

charm

absurd

movie

comedy
care

flick

film
characters

thriller formula

action
plot

screen

audience cliches

performances

director

boring
silly

drama

interesting

yarn

acting
enjoystory
funny

genre

ca

spy

cast
seems badjust

rare

worklove
feel

time old
like good cometoo

outway about makecan up

mosttohave that in this

laughs
absurd
charm
care

boring

emphasizestreat
flaws

smugly

fails

enjoy

imagine

bump

interesting

seemsbetter
chilling

sure

easily

entertaining

sillystraight
awful

comedy
less hard

movie
sweetfunny

humor

serves

little
justfilmfeelbad

like
but

characters workmorenot
love has

tothathave thismake you

of and the anfromve

0 1 2 3 4 5 6 7 8 9 10 11 12 Layer
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.00

0.06

0.13

0.19

0.25

0.31

0.38

0.44

0.50

0.56

0.63

0.69

0.75

0.81

0.88

0.94

1.00

absurd boring
flaws smugly

fails
care

disappointing imagine

bump
seems

impossible

sure

pretensions

filmmaking

relatively
unfortunately desperately

easily

predictable

glum

amateurish straight

less

lazy

sappy

laughsrecommend
charmtreatrefreshing

enjoyinteresting

masterpiece

chilling
funnier

entertaining

uncompromising

sweet

eat

ranks

kicks

yarn
yet

wise

like emphasizessqueeze
better

bangsilly

drips

comedy

movie

oddly

recycled
smarter

slap

edited
brooding

film

feel

but

art

if

A

B
Sample #145

Sample #1733

(a) The distribution view. (b) The word contribution view.

(d) The word context of “care.” (e) The information flow of the sample #145.

C

D

(c) The word context of “like.”

like_a
collapses_like

shot_like

scary_like

kubrick screen
film

strokes

misogyny
septic

puzzling volcano

crypt

dimensional

may
past

snail

amok

feels_like
feeling_like

bad crap
movie seem

looks_like
proficient

stretchless

prison

plays
pop

feel_like

blind

bores_like_antonia
gay

ya

might_likejaunt dude

feels_likebad
proficient

feeling_like

collapses_like

less
such

hard_to_like

tired

stretch
trademark

prison
cliches

antonia

unleashes

blown

brussels

winds

might_like
if_you_likedude

shot_like

that_like_adventure

sensational
refreshing

complain

banquet

stands

workings
jaunt more

clicking

Input 1 2 3 4 5 6 7 8 9 10 11

CLS
if

this
sappy
sappy
script

was
the

best
the

contest
received

,
those

rejected
must
have
been

astronomically
astronomically

bad
.

CLS

if
ifthis thissappy

sappy sappysappy sappy sappyscript

was
wasthe

thebest the
the the

contest
contest contestreceived

those those
rejected rejected

must
have have

been
astronomically

astronomically

astronomically
astronomically

bad

this

wasthe

have
been
astronomically

.

CLS

must

astronomically

bad

rejected
those

the

sappy

contest
received

if

best

script

,

E

makes_us_care
we_care

seems_have_cared

haphazard
lighting aspect

minutestory

care_about
care_less

nobody_cares

who_cares

satisfied

sustenance

sewage

characters

gullets

simulate

shovel

to year

submerged

bump

care_to_count
come

than times
more havingis been

also

makes_us_care
interested_care

surprised
too

care_about
care_less

nobody_cares

impossible_care

recycled

normally

gullets

filmmakers

haphazard

characters

whose

idiots

Layer 8 Layer 11 Layer 8 Layer 11

F

Fig. 7: The analysis of the BERT model on sentiment classification.

“care” (Fig. 7A) contributed more to negative predictions that went
against his intuition. He thus examined its word context view
(Fig. 7(d)). He observed that when the samples went through the
layers, the model tended to embed “care” in a negative context
, such as “care less,” “nobody cares,” “who cares.” Only a small
number were embedded in a positive context. This is due to the
more frequent presence of “care” in the negative samples (191
negative and 100 positive). Considering the SST2 data came from
movie reviews, E3 thought it was reasonable because “care” is
indeed found more often in negative reviews.

E3 further noticed the word “like” that appeared to be
class-irrelevant rather than positive (Fig. 7B). Examining its word
context view (Fig. 7(c)), there were four main clusters formed
at layer 8. Three of them were class-irrelevant, i.e., non-apparent
sentiment tendency at this layer, while one of them was negative.
The negative cluster contained “feels like,” “looks like,” where
“like” was a proposition with no strong sentiment tendency.
However, the negative context in this cluster, such as “crap,”
“blind,” and “criticizing,” associated this cluster with a negative
sentiment. Then through the further exchange of context, the
class-irrelevant clusters split. Parts of them fused into the negative
cluster, while other parts formed a positive cluster at layer 11. In
the positive cluster, “like” appeared more in phrases such as “if
you like,” and “might like” with the meaning of “favor.” From the
word context view, E3 was more confident in the BERT model’s
ability to disambiguate words with multiple meanings.
Understand the prediction of samples (R3). To understand how
the model processes a sample across layers, E3 selected the samples
of interest by coordinating the distribution view and sample list.
He first selected a set of samples with the highest confidence in the
distribution view and then examined their content in the sample list
to find samples with interesting structures. By repeating this step,
he finally selected samples #145 and #1733 (Fig. 7(a)).They are
predicted as negative and positive with turning structures.

Fig. 7(e) shows the information flow for predicting the negative
sample #145 “if this sappy script was the best the contest received,

those reject must be astronomically bad.” This sample is of a
turning structure with the word “if.” At layer 1, the phrase “contest
received” was initially formed with no-apparent sentiment tendency.
Then at layer 6, “was the best the contest received” was formed
together and regarded as positive due to the positive sentiment
of “best.” However, it turned into negative at layer 7 where the
information from “if” was transferred to it, which indicates that
the model correctly interpreted the turning structure. Before layer
6, the information was transferred more locally such as from
‘astronomically bad” to “must,” changing its sentiment into negative.
At layers 6 and 7, the information from “if” was transferred to
the second half of the sentence. So far the model recognized the
overall structure, and then at layers 7 and 10, it transferred the
information from the second half of the sentence to [CLS], which
ultimately determined the final negative prediction of this sample.

From this negative sample, E3 also gained insights into how the
model understands a sentence. At the beginning layers, words and
phrases were formed, such as “contest received,” “was the best,” and
“astronomically bad”. Along with the layers going deeper, more
sentiment information transfers were observed between words
and phrases. It shows that the model was mostly devoted to
understanding the sentence structure at early layers, while shifted its
attention to transferring information relevant to the prediction task.

E3 had similar observations for the positive sample #1733
“though the film is static, its writer-director’s heart is in the right
place, his plea for democracy and civic action laudable.” Again,
this sample has a turning structure with the word “though,” which
was recognized at layer 8. The recognition changed the sentiment
of “the film is static” to positive, which, together with the positive
sentiment of “is in the right place” and “laudable” resulted in the
final positive prediction.

5.1.2 Diagnosis
With a deeper understanding of how the model understands words
and samples, E3 then attempted to identify the deficiencies in the
current model and improve its performance (R2).



10

8 9 10 11

bonus
feature

had
the

and

as

on

9 10 11 12
Layer

superficial
flawed

subconscious
dvdattal strands

kafka

gilliam

lifted

stolid
important

story
bunuel
selfsayles

and

williamsspectacle
old sneers rockterrydare

difficult

if

surroundingoftenbonus
way

ups

smile
sad

werenothing realityinto say

the

get notmore again
feature

his inan you we
this

flawed
superficial

subconscious
dvd

self

important

strands story

effort
bile

schticky

attallifted
seemplunges
outtakeshopkins

old sneers

if

performers

sad

chris
difficultagainhang

bonus useddare
anthonyinfidelity just
groggy sameoncekafka

stolidhadlikesay
terry are thiscasings

fromhismaking
the throughfeature

bunuelmeat
williamsoften

A “dvd” to “CLS”

dvd

B

(a) Word-level. (b) Sample-level.

Fig. 8: Diagnosis of misclassified samples.

He selected all the misclassified samples in the distribution
view (the red and green crosses in Fig. 7(a)) and turned to the
word contribution view (Fig. 8(a)) to examine the important
words for predicting them. He first noticed the word “superficial”
(Fig. 8A), which remains strongly negative but turns to positive
in the last layer. Wondering why, he clicked on it to examine
the associated samples in the sample list and found that there
was a conflicting label for “a superficial way” (positive) and “the
superficial way” (negative). As a fine-tuned model, the last few
layers of BERT are more influenced by the training samples. E3
considered the conflicting label confused the model about the
sentiment of “superficial” in the last layer and resulted in some of
the misclassifications. He then corrected the conflicting labels for
the two samples.

Another word that drew his attention was “dvd,” which was
an important word through the layers. However, it was strongly
negative, which went against his intuition. Checking the associated
samples, he found that there were far more negative than positive
samples that included “dvd” (39 negative and 14 positive). E3 thus
considered this was a case of the shortcut issue [45] caused by the
limited diversity of training data. Shortcut refers to the phenomenon
that a model learns spurious correlations between words and labels,
e.g., classifying a word to be positive/negative only based on its
occurrence in according samples rather than understanding its
inter/intra-word relationships. To see the influence to prediction,
E3 then turned to an individual sample to check the information
flow. He selected sample #76, which is a positive sample but
wrongly predicted as negative. The information flow of this sample
(Fig. 8(b)) showed that “dvd” was regarded as a negative word from
the beginning and throughout the layers. Its negativity was passed
to [CLS] at layer 10 and contributed to the final prediction (Fig. 8B).
This confirmed that the spurious correlation between “dvd” and
negative label was indeed an important reason for the wrong
prediction. E3 thus decided to remove “dvd” from all 53 samples,
as class-irrelevant words can be removed in text classification
without sacrificing accuracy [46].

From the analysis of “superficial” and “dvd,” E3 wondered
whether conflicting labels and shortcut issues might be present in
other important words, accounting for most of the wrong predic-
tions. He thus hovered over the words in the word contribution
view and found other words that have the same problems (e.g.,
“attal,” “subconscious”). All together, E3 corrected two conflicting
labels (“superficial,” “attal”) and removed two words (“dvd,”
“subconscious”) with sample bias. After fine-tuning the model,

Layer 1-8 Layer 9-12

Adapter

Classification layer

sn
ek

oT
 t

up
nI

BERT Model

Fig. 9: Improving the BERT model by adding an adapter module.

0.00

0.06

0.13

0.19

0.25

0.31

0.38

0.44

0.50

0.56

0.63

0.69

0.75

0.81

0.88

0.94

1.00

amateurish
pretends

hypocritical arrogant
videotape irritating

awful
sappy

charmless

low

open

cliches tedious epiphany

lucy

disjointed
waste

unconvincing acting

why

clockstopperscapable

seen
lack

fails

deceptively
cleverest

amusing
valiantly

minimalistliterate

soderbergh

gorgeouspoem

humorprobing

tone
sexy

wry

hip

ode

theto fun
of

love
canadian

it

oftenandthat

an as

end wit

for

than

more

is

on

A

D this

sappy

script
was
the

thecontest
received

thosemust
have been

astronomically

CLS

bad

rejected

if

sappy
best

,

astronomically

only
deceptively terry
watch out

cremaster followingbut
laramie

with

movie
sympathizing yourself

say

about

every

dramatic

weltyin

film

to

for like smart
an

cedar

isoperandi

via

thatpremise his

pain

youthis

B

deceptively_amusing
ofcinematic

deceptively_simple

tone
cleverest

comedies

and
yearpoem

deceptively_slight

the
gorgeous

deceptively_minimalist

C

Fig. 10: The analysis of ELMO+LSTM model.

the eight previously misclassified samples were now predicted with
correct sentiments.

E3 was also interested in other deficiencies in the model besides
the data problem. He noticed that in the last two layers, several
words with strong positive or negative tendencies, such as “love,”
“little,” “bad,” still do not contribute highly, although they have the
majority of the associated samples in the according sentiment class
(Fig. 7E). For example, “love” occurred in 641 positive samples and
147 negative negative samples, and the similar were observed for
“little” and “bad.” This indicated that the model was still coarse-
grained for the specific task. Therefore, E3 adopted the adapter
method to enhance the model performance by inserting an adapter
module into the last four layers (Fig. 9). He followed the adapter
architecture proposed by Houlsby et al. [47] with the hidden layer
size of 64 and the tanh activation function. The parameters of the
original fine-tuned model were frozen, and the new adapter module
was trained. After training, the importance of “love,” “little,” and
“bad” increased, showing that the ability of the new model to process
these class-relevant words was improved. Accordingly, the test
accuracy of the new model was increased from 93.23% to 93.92%.

5.1.3 Model Comparison
E4 was interested in using the unified measure to directly com-
pare how different models work. He carried out the sentiment
classification task on the same SST-2 dataset using two models.



11

One is the 12-layer BERT model. The other is the 4-layer Bi-
LSTM model with input enhanced by a pre-trained ELMo+LSTM
model [48]. It achieved 98.28% accuracy on the training set and
88.53% accuracy on the test set. E4 then imported each of the
models into DeepNLPVis for comparison.

From the distribution views (Fig. 7(a) and Fig. 10A), E4 first
noticed that there were many more misclassified samples using
ELMo+LSTM than using BERT. Further examination showed
that there was an obvious difference in the keywords extracted.
The keywords extracted in BERT are mostly common words
(“laughs,” “recommend,” “boring,” etc.), while those extracted
in ELMo+LSTM included more rare words such as “valiantly,”
“hypocritical,” “amateurish.” These words are of strong sentiments
but have low frequency in the SST-2 dataset. E4 considered
the pretraining from ELMo helped the LSTM model to better
understand the sentiments of these rare terms.

“deceptively” was considered the most important positive
keyword in ELMo+LSTM, which is against E4’s intuition. Further
examination of samples showed that there were far more positive
samples than negative samples containing “deceptively” (35 posi-
tive and 1 negative). E4 thus considered ELMo+LSTM introduced
the shortcut issue, the same as E3 when analyzing “dvd.” To verify
this, E4 checked the word context for “deceptively” (Fig. 10C).
Many positive words, such as “amusing,” “gorgeous,” “cleverest,”
were presented in the context, which falsely supported the positive
sentiment of “deceptively.” E4 considered the presence of shortcuts
in ELMo+LSTM also explained its high accuracy on training data
but a noticeable performance drop on the unseen test data.

E4 then turned to analyze the misclassified samples in
ELMo+LSTM. From the word contribution view (Fig. 10B), he
found that the important words included quite a few names (e.g.,
“laramie,” “terry”), nouns (e.g., “movie,” “yourself”) and, stop
words (e.g., “with,” “in”), which are irrelevant to the prediction
task. E4 commented, “this is consistent with the observation in a
previous study that the recurrent structure in LSTM limits its ability
to filter some noisy words from the sequence [12]. It is undesirable
for sentiment classification.” E4 then compared the information
flow of sample #145 using the two models. He observed that the
information transition in ELMo+LSTM (Fig. 10D) was more local,
showing the limitation of the ELMo+LSTM model in dealing with
the association in non-adjacent words. Unlike BERT, the successful
prediction was largely based on several strong negative words, such
as “reject” and “bad,” rather than recognizing the turning structure
of the sample.

The comparison showed superior performance of BERT over
ELMo+LSTM on the sentiment classification task. E4 thus con-
sidered to improve the ELMo+LSTM model using the knowledge
distilled from the BERT model. He followed the knowledge
distillation method in [49], where the ELMo+LSTM model was
the student model while the BERT was the teacher model. The
idea of knowledge distillation is to refine the student model by
minimizing the difference (measured using KL divergence) between
its output and the teacher model’s output, and thus to improve the
performance of the student model. In this case, after knowledge
distillation, the test accuracy of the new ELMo-LSTM model was
increased from 88.53% to 89.33%.

5.2 Multi-Class Classification

E3 was satisfied with the assistance of DeepNLPVis for analyzing
sentiment classification. To see how this assistance generalizes

to other classification tasks, he performed a further classification
task on news. A subset was randomly selected from the AG News
topic classification dataset [50]. There are four classes: “world”,
“sports”, “business”, “sci/tech”, each containing 30,000 training
samples and 1,900 testing samples. The BERT model achieved
94.79% test accuracy.

To unify the analysis, a confusion matrix (Fig. 1(a)) was
provided to select two classes for further analysis. E3 observed that
the greatest confusion was between the “business” and the “sci/tech”
news. He selected the two classes and then, following a similar
process in the first case, started the analysis with the distribution
view (Fig. 1(b)). He observed that most samples of the two classes
were distributed apart (left and right). However, a small number of
“business” news (orange) were horizontally closer to the “sci/tech”
distribution (blue), indicating these “business” news have some
similarities to “sci/tech” news (Fig. 1A). It seemed consequential
that there were more “business” news misclassified as “sci/tech”
news than the other way around. E3 then selected these “business”
news samples in the middle of the distribution view for further
examination in the word contribution view (Fig. 1(c)). He noticed
that there was a significant number of important words that are
typically related to technology, such as “antitrust,” “google,” “hp,”
etc. Checking in the sample list, he further found many of these
samples were “business” news related to “sci/tech” companies.
Their content is indeed similar to “sci/tech” news.

Among these technology words, “google” was of high impor-
tance throughout the layers and drew the attention of E3. Checking
its associated samples in the sample list, there were quite a few
misclassified samples. Selecting the one with the lowest confidence,
E3 turned to check its information flow (Fig. 1(e)). The selected
sample, “Google IPO faces Playboy slip-up The bidding gets
underway for Google’s public offering, despite last-minute worries
over an interview with its bosses in Playboy magazine,” was a
“business” news. However, “google,” which was regarded as a
“sci/tech” word throughout the layers, played an important role in
the model’s understanding of the sample. The two “googles” had
the “sci/tech” tendency from the beginning of the layers. When the
first “google” transferred its information to “google’s” at layer 2
(Fig. 1B), the tendency was reinforced and then passed to the [CLS]
at layer 10 (Fig. 1C). This contributed to the misclassification.

6 EXPERT FEEDBACK AND DISCUSSION

After the case studies, five semi-structured interviews were con-
ducted with the experts we worked with. In the interview, we first
introduced the visual design and interactions, and then explored the
tool together with the experts through an example case. Each of the
interviews took 50-70 minutes. Overall, the experts gave positive
feedback on the usability of DeepNLPVis. They also pointed out
several limitations that provide opportunities for future research.

6.1 Usability
Informative visualization and deeper understanding. All the
experts agreed that the visualization was informative and helped
them deeply understand the models. They particularly mentioned
that the polarity in the distribution view, the most contributed and
the less contributed words in the word contribution view, and the
phrase formation in the information flow view facilitated their
understanding of the models. E3 commented, “The polarity of
contribution is very useful to detect the shortcut issue that learns
spurious correlations between words and category labels (e.g., “dvd”



12

in the first case). Such spurious correlations help identify which
types of words (e.g., a single word, a word in context, or ordered
pairs) lead to the limited diversity of training data. Knowing the
causes, I can enhance the data accordingly.” Although the experts
took 25.5 minutes on average (STDEV=2.89) to get familiar with
the tool, they believed that the enlightening information and deeper
understanding gained through the exploration deserved the efforts.
Improving analysis efficiency. The experts especially liked the
analysis process driven by a set of interactions. They commented
that existing tools, such as TensorBoard, only allowed them to
examine the samples one by one. Without a comprehensive under-
standing of the training process from different perspectives, diagnos-
ing a performance issue typically relied on a time-consuming trial-
and-error process. After trying DeepNLPVis, the experts praised
its efficient analysis process brought by the integral exploration
at the corpus, sample, and word levels. E1 said, “The analysis
process from the sample distribution to the word contribution and
the information flow inside a sample looks natural to me. The
interactions enable me to find interesting information quickly. For
example, the trending hint button in the word contribution view
helps me identify the changing patterns of the words of interest,
especially those conflicted with my intuition.”
Promoting effective communication in deployment. In the inter-
view, the experts were impressed with the explanation capability
of DeepNLPVis and the provided informative information. They
believed that it could be used for effective communication between
different sectors inside an institution. This is because the employed
intuitive visualization provides a common ground for communi-
cation between different types of practitioners, such as model
developers, consumers, and project managers. For example, E4
commented that the visual explanation provided by the information
flow view could well explain how the model worked at the sample
level. Such explanation is very helpful to illustrate the developed
deep NLP model to the model consumers who are not machine
learning experts, e.g., the developers in a product group. With
a clear understanding of the model, the developers could better
maintain it in the product.

6.2 Limitations and Future Work

Task Generalization. In the prototype, text classification is used
as an example to illustrate how DeepNLPVis supports the unified
understanding of NLP models. Although the prototype supports the
analysis of the classification tasks with a pair of sentences as input,
it cannot distinguish intra-sentence and inter-sentence relations. To
handle this problem, we consider designing proper visual encodings
to distinguish the difference between these two relationships and
enable a better analysis of such tasks. In addition to classification,
the experts also express the need to apply DeepNLPVis to
other tasks such as text summarization, machine translation, and
question answering. These tasks can be regarded as a multi-class
classification task with a relatively larger class number. In these
tasks, the class number equals to the number of words/phrases.
As a result, for these tasks, how to handle a large class number in
visualization is a key challenge faced in the future work.
Visual scalability. The experts mentioned that larger NLP models,
such as GPT-3, usually contained dozens of layers, and a sample
might contain hundreds or even thousands of words. With the
increased number of layers and sample length, the scalability
issue will arise in the word-level and sample-level visualizations.
A possible solution is to utilize the layer clustering technique

and overview + detail visualization. An example is the flow
visualization that is affected by the sample length, as each
line represents a word. This visualization will quickly become
cluttered if hundreds or thousands of words are included in a
sample. The experts indicated that their analysis usually started
from representative samples and representative words in each
sample. Thus, in the future, we are interested in identifying these
representative samples and words to balance the informativeness
and readability of this visualization.
Model refinement. After identifying the performance issues, the
experts prefer a mechanism that tightly integrates interactive
visualization with machine learning to refine the model semi-
automatically rather than to improve the model architecture
manually. For example, in sentiment analysis, if the expert corrects
the sentiment of several words through the visualization, s/he
would expect the model can be automatically refined based on
the corrections. Thus, an interesting direction for future work is
to explore how to transform the provided feedback into a prior
or constraint for the model and progressively refine the model.
Another related interesting direction is how to integrate active
learning into the system to give more hints and reduce the number
of samples to be verified by users.

7 CONCLUSION

We have presented a visual analysis method, DeepNLPVis, to
facilitate a unified understanding of deep NLP models. This method
is built upon an information-based measure to illustrate how a deep
NLP model maintains the information of input words in a sample
with a multi-level visualization. The effectiveness and usefulness
of our method are demonstrated through case studies, in which
the experts utilize DeepNLPVis to understand and analyze the
model behaviors in text classification tasks and explore the root
causes of the successful and unsuccessful cases. The experts are
generally satisfied with the developed method as it provides a
unified understanding of different deep NLP models allow them to
conveniently compare different types of models. Moreover, it helps
identify the underlying reason for low performance and thus makes
informed improvements in the models.

REFERENCES

[1] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and
J. Gao, “Deep learning–based text classification: A comprehensive review,”
ACM Computing Surveys, vol. 54, no. 3, pp. 1–40, 2021.

[2] Y. Kim, “Convolutional neural networks for sentence classification,” in
the Conference on Empirical Methods in Natural Language Processing,
2014, pp. 1746–1751.

[3] H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush, “LSTMVis: A tool
for visual analysis of hidden state dynamics in recurrent neural networks,”
IEEE Transactions on Visualization and Computer Graphics, vol. 24,
no. 1, pp. 667–676, 2018.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
Neural Information Processing Systems, 2017, pp. 5998–6008.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in the
Conference of the North American Chapter of the Association for
Computational Linguistics, 2019, pp. 4171–4186.

[6] A. Y. Kim and J. Hardin, ““playing the whole game”: A data collection
and analysis exercise with google calendar,” Journal of Statistics and
Data Science Education, vol. 29, no. sup1, pp. S51–S60, 2021.

[7] J. Yuan, C. Chen, W. Yang, M. Liu, J. Xia, and S. Liu, “A survey of visual
analytics techniques for machine learning,” Computational Visual Media,
vol. 7, no. 1, pp. 3–36, 2021.



13

[8] R. Wang, D. Tang, N. Duan, Z. Wei, X. Huang, G. Cao, D. Jiang, M. Zhou
et al., “K-Adapter: Infusing Knowledge into Pre-Trained Models with
Adapters,” in Findings of the Association for Computational Linguistics:
ACL-IJCNLP, 2021, pp. 1405–1418.

[9] Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and H. Qu,
“Understanding hidden memories of recurrent neural networks,” in IEEE
Conference on Visual Analytics Science and Technology, 2017, pp. 13–24.

[10] J. F. DeRose, J. Wang, and M. Berger, “Attention flows: Analyzing and
comparing attention mechanisms in language models,” IEEE Transactions
on Visualization and Computer Graphics, vol. 27, no. 2, pp. 1160–1170,
2021.

[11] I. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner,
J. Yung, D. Keysers, J. Uszkoreit, M. Lucic et al., “Mlp-mixer: An all-mlp
architecture for vision,” arXiv preprint arXiv:2105.01601, 2021.

[12] C. Guan, X. Wang, Q. Zhang, R. Chen, D. He, and X. Xie, “Towards
a deep and unified understanding of deep neural models in NLP,” in
International Conference on Machine Learning, 2019, pp. 2454–2463.

[13] F. K. Došilović, M. Brčić, and N. Hlupić, “Explainable artificial in-
telligence: A survey,” in International Convention on Information and
Communication Technology, Electronics and Microelectronics, 2018, pp.
0210–0215.

[14] Y. Ming, P. Xu, H. Qu, and L. Ren, “Interpretable and steerable sequence
learning via prototypes,” in ACM International Conference on Knowledge
Discovery and Data Mining, 2019, pp. 903–913.

[15] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and
K.-R. Müller, “How to explain individual classification decisions,” Journal
of Machine Learning Research, vol. 11, pp. 1803–1831, 2010.

[16] M. T. Ribeiro, S. Singh, and C. Guestrin, ““why should i trust you?”
explaining the predictions of any classifier,” in ACM International
Conference on Knowledge Discovery and Data Mining, 2016, pp. 1135–
1144.

[17] D. Ren, S. Amershi, B. Lee, J. Suh, and J. D. Williams, “Squares:
Supporting interactive performance analysis for multiclass classifiers,”
IEEE Transactions on Visualization and Computer Graphics, vol. 23,
no. 1, pp. 61–70, 2017.

[18] J. Zhang, Y. Wang, P. Molino, L. Li, and D. S. Ebert, “Manifold: A model-
agnostic framework for interpretation and diagnosis of machine learning
models,” IEEE Transactions on Visualization and Computer Graphics,
vol. 25, no. 1, pp. 364–373, 2019.

[19] P. Chawla, S. Hazarika, and H.-W. Shen, “Token-wise sentiment decompo-
sition for convnet: Visualizing a sentiment classifier,” Visual Informatics,
vol. 4, no. 2, pp. 132–141, 2020.

[20] Z. Dong, T. Wu, S. Song, and M. Zhang, “Interactive attention model
explorer for natural language processing tasks with unbalanced data sizes,”
in IEEE Pacific Visualization Symposium, 2020, pp. 46–50.

[21] M. Liu, J. Shi, K. Cao, J. Zhu, and S. Liu, “Analyzing the training
processes of deep generative models,” IEEE Transactions on Visualization
and Computer Graphics, vol. 24, no. 1, pp. 77–87, 2018.

[22] X. Ji, Y. Tu, W. He, J. Wang, H.-W. Shen, and P.-Y. Yen, “Usevis: Visual
analytics of attention-based neural embedding in information retrieval,”
Visual Informatics, vol. 5, no. 2, pp. 1–12, 2021.

[23] S. Gehrmann, H. Strobelt, R. Krüger, H. Pfister, and A. M. Rush, “Visual
interaction with deep learning models through collaborative semantic
inference,” IEEE Transactions on Visualization and Computer Graphics,
vol. 26, no. 1, pp. 884–894, 2020.

[24] S. Liu, Z. Li, T. Li, V. Srikumar, V. Pascucci, and P.-T. Bremer, “Nlize: A
perturbation-driven visual interrogation tool for analyzing and interpreting
natural language inference models,” IEEE Transactions on Visualization
and Computer Graphics, vol. 25, no. 1, pp. 651–660, 2019.

[25] A. Karpathy, J. Johnson, and L. Fei-Fei, “Visualizing and understanding
recurrent networks,” in the Workshop at International Conference on
Learning Representations, 2016.

[26] J. Li, X. Chen, E. Hovy, and D. Jurafsky, “Visualizing and understanding
neural models in NLP,” in the Conference of the North American Chapter
of the Association for Computational Linguistics, 2016, pp. 681–691.

[27] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau, “Visual analytics
in deep learning: An interrogative survey for the next frontiers,” IEEE
Transactions on Visualization and Computer Graphics, vol. 25, no. 8, pp.
2674–2693, 2019.

[28] D. Cashman, G. Patterson, A. Mosca, N. Watts, S. Robinson, and R. Chang,
“RNNbow: Visualizing learning via backpropagation gradients in rnns,”
IEEE Computer Graphics and Applications, vol. 38, no. 6, pp. 39–50,
2018.

[29] H. Strobelt, S. Gehrmann, M. Behrisch, A. Perer, H. Pfister, and A. M.
Rush, “Seq2Seq-Vis: A visual debugging tool for sequence-to-sequence
models,” IEEE Transactions on Visualization and Computer Graphics,
vol. 25, no. 1, pp. 353–363, 2019.

[30] B. C. Kwon, M.-J. Choi, J. T. Kim, E. Choi, Y. B. Kim, S. Kwon,
J. Sun, and J. Choo, “RetainVis: Visual analytics with interpretable and
interactive recurrent neural networks on electronic medical records,” IEEE
Transactions on Visualization and Computer Graphics, vol. 25, no. 1, pp.
299–309, 2019.

[31] I. Tenney, J. Wexler, J. Bastings, T. Bolukbasi, A. Coenen, S. Gehrmann,
E. Jiang, M. Pushkarna, C. Radebaugh, E. Reif et al., “The language
interpretability tool: Extensible, interactive visualizations and analysis
for NLP models,” in the Conference on Empirical Methods in Natural
Language Processing, 2020, pp. 107–118.

[32] Y. Yang, R. Khanna, Y. Yu, A. Gholami, K. Keutzer, J. E. Gonzalez,
K. Ramchandran, and M. W. Mahoney, “Boundary thickness and robust-
ness in learning models,” in Advances in Neural Information Processing
Systems, 2020, pp. 6223–6234.

[33] I. Tenney, P. Xia, B. Chen, A. Wang, A. Poliak, R. T. McCoy, N. Kim,
B. Van Durme, S. R. Bowman, D. Das et al., “What do you learn
from context? probing for sentence structure in contextualized word
representations,” in International Conference on Learning Representations,
2018.

[34] L. Rokach and O. Maimon, “Clustering methods,” in Data mining and
knowledge discovery handbook. Springer, 2005, pp. 321–352.

[35] L. Van Der Maaten, “Accelerating t-sne using tree-based algorithms,”
Journal of Machine Learning Research, vol. 15, no. 1, pp. 3221–3245,
2014.

[36] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of
Machine Learning Research, vol. 9, no. 11, pp. 2579–2605, 2008.

[37] I. Yahav, O. Shehory, and D. Schwartz, “Comments mining with tf-idf:
the inherent bias and its removal,” IEEE Transactions on Knowledge and
Data Engineering, vol. 31, no. 3, pp. 437–450, 2018.

[38] Y. Tanahashi and K.-L. Ma, “Design considerations for optimizing story-
line visualizations,” IEEE Transactions on Visualization and Computer
Graphics, vol. 18, no. 12, pp. 2679–2688, 2012.

[39] S. Liu, Y. Wu, E. Wei, M. Liu, and Y. Liu, “Storyflow: Tracking the
evolution of stories,” IEEE Transactions on Visualization and Computer
Graphics, vol. 19, no. 12, pp. 2436–2445, 2013.

[40] L. Shi, F. Wei, S. Liu, L. Tan, X. Lian, and M. X. Zhou, “Understanding
text corpora with multiple facets,” in IEEE Conference on Visual Analytics
Science and Technology, 2010, pp. 99–106.

[41] W. Cui, S. Liu, L. Tan, C. Shi, Y. Song, Z. Gao, H. Qu, and X. Tong,
“Textflow: Towards better understanding of evolving topics in text,” IEEE
Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp.
2412–2421, 2011.

[42] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a
sentiment treebank,” in the Conference on Empirical Methods in Natural
Language Processing, 2013, pp. 1631–1642.

[43] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“GLUE: A multi-task benchmark and analysis platform for natural
language understanding,” in International Conference on Learning
Representations, 2019.

[44] G. Brunner, Y. Liu, D. Pascual, O. Richter, M. Ciaramita, and R. Watten-
hofer, “On identifiability in transformers,” in International Conference on
Learning Representations, 2020.

[45] T. McCoy, E. Pavlick, and T. Linzen, “Right for the wrong reasons:
Diagnosing syntactic heuristics in natural language inference,” in the
Annual Meeting of the Association for Computational Linguistics, 2019,
pp. 3428–3448.

[46] T. Zhang, M. Huang, and L. Zhao, “Learning structured representation
for text classification via reinforcement learning,” in AAAI Conference on
Artificial Intelligence, 2018.

[47] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe,
A. Gesmundo, M. Attariyan, and S. Gelly, “Parameter-efficient transfer
learning for nlp,” in International Conference on Machine Learning, 2019,
pp. 2790–2799.

[48] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” in
the Conference of the North American Chapter of the Association for
Computational Linguistics, 2018, pp. 2227–2237.

[49] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” in NIPS Deep Learning and Representation Learning Workshop,
2015.

[50] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks
for text classification,” in Advances in Neural Information Processing
Systems, 2015, pp. 649–657.



14

Zhen Li is a first-year Ph.D. student of Soft-
ware School, Tsinghua University. His research
interest is explainable artificial intelligence. He
received a B.S. degree from Tsinghua University
and a M.Phil. degree from Hong Kong University
of Science and Technology.

Xiting Wang is a senior researcher at Microsoft
Research Asia. Her research interests include
explainable machine learning and visual text
analytics. She has published academic papers on
reputable international conferences and journals
in her research area, such as KDD, TKDE, AAAI,
IJCAI, TVCG and VAST. One of her first author
papers has been chosen as the TVCG spotlight
article for Dec. 2016. She is a senior program
committee member of AAAI and is a program
committee member of many top conferences.

Weikai Yang is a second-year Ph.D. student at
Tsinghua University. His research interests lie
in integrating the Machine Learning into Visual
Analytics, which can facilitate the understanding
of large-scale data and make it easier for the prac-
titioners to use the machine learning techniques.

Jing Wu is a lecturer in computer science and
informatics at Cardiff University, UK. Her research
interests are in computer vision and graphics
including image-based 3D reconstruction, face
recognition, machine learning and visual analyt-
ics. She received BSc and MSc from Nanjing
University, and Ph.D. from the University of York,
UK. She serves as a PC member in CGVC,
BMVC, etc.

Zhengyan Zhang is a second-year Ph.D. student
of the Department of Computer Science and
Technology, Tsinghua University. His research
interests include natural language processing
and social computing. He has published papers in
international conferences and journals, including
ACL, EMNLP, and TKDE.

Zhiyuan Liu is an associate professor at Ts-
inghua University. He got his BEng degreeand
his Ph.D. from Tsinghua University. His research
interests are natural language processing, infor-
mation extraction, knowledge graphs, and social
computation. He has published over 80 papers in
international journals and conferences, including
ACM/IEEE Transactions, AAAI, IJCAI, ACL, and
EMNLP. He has also served as PC/Area Chair of
several international conferences, including ACL,
EMNLP, WWW, CIKM, COLING, etc.

Maosong Sun is a professor at Tsinghua Uni-
versity. He got his BEng degree and MEng de-
gree from Tsinghua University, and got his Ph.D.
degree from City University of Hong Kong. His
research interests include natural language pro-
cessing, Chinese computing, Web intelligence,
and computational social sciences. He serves
as a vice president of the Chinese Information
Processing Society, the council member of China
Computer Federation, and the Editor-in-Chief of
the Journal of Chinese Information Processing.

Hui Zhang is an Associate Professor at School
of Software, Tsinghua University, China. She
received her B.Sc. and Ph.D. in Computer Sci-
ence from Tsinghua University, in 1997 and 2003,
respectively. Her research interests include com-
puter aided design and computer graphics.

Shixia Liu is a professor at Tsinghua University.
Her research interests include explainable artifi-
cial intelligence, visual text analytics, and text min-
ing. She worked as a research staff member at
IBM China Research Lab and a lead researcher
at Microsoft Research Asia. She received a B.S.
and M.S. from Harbin Institute of Technology, a
Ph.D. from Tsinghua University. She is a fellow
of IEEE and an associate editor-in-chief of IEEE
Trans. Vis. Comput. Graph.


	Introduction
	Related Work
	Machine Learning for Understanding NLP Models
	Visualization for Understanding NLP Models

	Requirement Analysis
	Survey on Practices of Building Deep NLP Models
	Design Requirements

	DeepNLPVis
	Overview
	Information-Based Interpretation
	Three-Level Visualization
	Corpus-Level Visualization
	Sample-Level Visualization
	Word-Level Visualization


	Case Studies
	Binary Sentiment Classification
	Understanding
	Diagnosis
	Model Comparison

	Multi-Class Classification

	Expert Feedback and Discussion
	Usability
	Limitations and Future Work

	Conclusion
	References
	Biographies
	Zhen Li
	Xiting Wang
	Weikai Yang
	Jing Wu
	Zhengyan Zhang
	Zhiyuan Liu
	Maosong Sun
	Hui Zhang
	Shixia Liu


