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Fig. 1: Top: compared with the baseline (a) that only optimizes proximity, our method (b) places the samples that are predicted as
“8” (A) in the cluster of “8.” Bottom: compared with the baseline (c), our method (d) groups the dark blue cells C1-C3 in region C’.

Abstract— Grid visualizations are widely used in many applications to visually explain a set of data and their proximity relationships.
However, existing layout methods face difficulties when dealing with the inherent cluster structures within the data. To address this
issue, we propose a cluster-aware grid layout method that aims to better preserve cluster structures by simultaneously considering
proximity, compactness, and convexity in the optimization process. Our method utilizes a hybrid optimization strategy that consists
of two phases. The global phase aims to balance proximity and compactness within each cluster, while the local phase ensures the
convexity of cluster shapes. We evaluate the proposed grid layout method through a series of quantitative experiments and two use
cases, demonstrating its effectiveness in preserving cluster structures and facilitating analysis tasks.

Index Terms— Grid layout, similarity, convexity, compactness, optimization

1 INTRODUCTION

Grid visualizations are widely used to visually analyze data collections
due to their high space efficiency [16]. Over two hundred CVPR
2022 papers utilize grid-like visualizations to compare and analyze
model outputs. With these visualizations, computer vision researchers
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hope to perceive the samples in one cluster (e.g. , the samples with
the same predictions) as a whole, which makes it easier to diagnose
potential causes of low-performance models. If such cluster structures
are not well perceived, accurate analysis and diagnosis will be hindered.
For example, in the baseline method that only considers proximity
(Fig. 1(a)), the samples of “8” in A and B are placed far away from
the cluster of “8.” This arrangement may lead users to draw the wrong
conclusion that the model predicts these samples to be closely related to
“3.” However, the samples in A are similar to other samples of “8” and
are predicted as “8.” By preserving cluster structures, these samples
are merged into the cluster of “8,” which reduces false inferences. In
addition, the sample that is misclassified as “3” (B) remains in the
cluster of “3” (Fig. 1B′), which can be identified.

Several grid layout methods have been developed to improve read-
ability by preserving the proximity relationships between data sam-
ples [17, 40, 50]. Despite their benefits, these methods struggle to
maintain cluster structures within the data. For example, the samples in
Fig. 1A are placed far away from their corresponding cluster. Accord-
ing to the Gestalt principles of perceptual grouping, preserving cluster
structures requires not only the preservation of proximity relationships
but also the compactness and convexity of each cluster shape [24,45,51].



To develop a layout method that considers all three principles simulta-
neously, it is crucial to quantify them. Proximity is usually measured by
the similarity preservation between samples and has been well studied
by existing grid layout methods. The compactness is usually mea-
sured by the deviation of the grid positions from their corresponding
cluster centers [45]. However, there is currently no widely accepted
measure for quantifying shape convexity that aligns well with people’s
perception. To address this issue, we conducted a user study with 54 par-
ticipants to evaluate which convexity measures are more consistent with
people’s perception. We found that although no single measure matched
all participants’ perception, two representative measures were preferred
by two distinct groups of participants. However, these two measures
conflict with each other to some extent. This requires our method to
support different convexity measures to meet diverse user preferences.

After quantifying proximity, compactness, and convexity, we de-
velop a cluster-aware grid layout method that balances the three mea-
sures. However, achieving this balance is challenging, especially when
attempting to consider all three measures simultaneously during the
layout process. Upon analyzing these measures, we discovered that
proximity and compactness are affected by all grid cells, while convex-
ity is sensitive to boundary cells between different clusters. Based on
this finding, our layout method employs a global–local strategy to sim-
plify the optimization process. Accordingly, the layout method consists
of two phases: global assignment and local adjustment. The global
assignment phase aims to generate a layout that balances proximity and
compactness. This is formulated as a multi-task linear assignment prob-
lem and solved by an accelerated Jonker-Volgenant algorithm [9]. The
local adjustment phase attempts to swap boundary cells between differ-
ent clusters to improve convexity without apparently compromising the
proximity and compactness achieved in the global assignment. Quanti-
tative experiments demonstrate that our layout method achieves experi-
mentally optimal balances among proximity, compactness, and convex-
ity. We also present two use cases to exemplify the usage of our method.

The main contributions of our work include:
• study results on which convexity measures are more consistent

with human perception.
• a grid layout method that achieves experimentally optimal balance

among proximity, compactness, and convexity.
• an open-source implementation of the proposed grid layout

method that enables easy plug-in of different convexity measures,
which is available at https://github.com/thu-vis/Cluster-Aware-
Grid-Layout.

2 RELATED WORK

2.1 Convexity Measures
Mathematically, a shape is convex if it completely contains the line
segment connecting any two points within the shape [44]. Based on
this definition, researchers have developed various convexity measures,
which can be classified into two categories [42]: area-based measures
and boundary-based measures.

Area-based measures rely on the area of the shape to determine their
scores. A common measure for evaluating the convexity of a shape is
the area ratio, which computes the ratio of its actual area to that of its
convex hull [13, 49]. This measure was extended by using the largest
convex polygon contained in the shape (convex skull) [54] or consider-
ing the ratio between the area of the convex skull and the area of the
convex hull [5]. However, these measures are sensitive to long and
thin protrusions or intrusions because such protrusions/intrusions
will largely affect the shape of its convex hull/skull. To address this
issue, Rosin and Mumford [43] improved this measure by calculat-
ing the discrepancy between the area of the shape and its maximally
overlapping convex shape. In addition to considering the area discrep-
ancy, researchers have proposed several measures based on probability.
For example, Held and Abe [19] estimated the degree of convexity
by computing the probability that the shape contains line segments
connecting two randomly sampled points inside the shape. Rahtu et
al. [42] proposed a faster computation method by verifying if the shape
contains a specific point on the segment (e.g., the midpoint) instead of
examining the entire segment. Recently, Žunić and Rosin [61] proposed

(a) 0.95, 0.50 (b) 0.96, 0.31 (c) 0.32, 0.87 (d) 0.21, 0.78

Fig. 2: The comparison between area ratios (the first value) and perime-
ter ratios (the second value). In (a) and (b), the boundary length changes
considerably while the area changes slightly. The low perimeter ratios
indicate that the perimeter ratio is more sensitive to changes in the
boundary length. In contrast, (c) and (d) show considerable changes in
their area and slight changes in boundary length. The low area ratios
indicate that the area ratio is more sensitive to changes in the area.

a parametric measure based on the similarity between the shape and
its convex hull. A larger parameter of the measure leads to a stronger
penalty for the area discrepancy near the boundary.

Boundary-based measures evaluate the convexity of a shape by
analyzing the geometric properties of its boundary, such as perimeter
and tangents. A basic measure is the perimeter ratio, which computes
the ratio of the L2 perimeter of the convex hull to that of the shape [39].
Žunić and Rosin [54] further proposed to use the minimum ratio of
the L2 perimeter of its bounding rectangles to the L1 perimeter of the
shape over all the rotations, which is more sensitive to changes in the
boundary of a concave region. Another boundary-based measure is
proposed based on the fact that a convex shape always lies entirely on
one side of its tangent [12]. The convexity measure is then measured
by the average ratio over all the dominant parts cut by the tangents.

Generally, area-based measures are sensitive to changes in the area
of a shape, while boundary-based measures are sensitive to changes in
the boundary of a shape. Fig. 2 compares the area ratio (area-based)
and perimeter ratio (boundary-based) in four examples. The perimeter
ratios of the two examples with considerable changes in their boundary
length ((a) and (b)) are much lower. While the area ratios of the two
examples with considerable changes in their area ((c) and (d)) are
much lower. The selection of convexity measures will depend on the
specific analysis tasks. If users want to detect large concavities in the
area, they usually choose area-based measures, while boundary-based
measures are preferred for detecting irregular boundaries. To determine
which measures are better aligned with human perception in a grid
visualization, we conducted a user study to identify the most appropriate
measures. These measures are given priority in our layout method.

2.2 Grid Visualizations
Initial efforts on grid visualizations randomly assign data samples to
the grid cells [34]. Despite its simplicity, this method has proven useful
for visually analyzing various data, including images [8, 21, 29, 37, 47],
textual data [15, 46], video data [6, 25], relational data [33, 36, 59],
geometric data [10, 34], and geospatial data [57, 60]. Subsequently,
many grid layout methods have been developed to facilitate the analysis
of similar samples by preserving pairwise distances between them.
These methods fall into two categories [18]: direct mapping methods
and projection-based methods.

The methods in the first category directly map high-dimensional
samples onto a two-dimensional grid [2, 53]. Quadrianto et al. [40]
proposed a method to maximize the correlation between the pairwise
distances in the high-dimensional space and the pairwise distances in
the grid layout. Another method, the self-sorting map [50], randomly
assigns samples to grid cells and then iteratively swaps them to improve
the similarity between neighboring samples. Barthel and Hezel [1] fur-
ther improved the proximity preservation in the self-sorting map by uti-
lizing an adaptive method to calculate the neighborhood representation
of each sample. However, these two methods use a brute-force search
to find the best swap, which is time-consuming. To boost efficiency,
Barthel et al. [2] identified the best swap by solving a small-scale
linear assignment problem locally. Other methods aim to optimize
additional measures, such as compactness [35, 45] and aesthetic cri-
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Fig. 3: Pearson correlations between seven convexity measures. The
block-diagonal pattern highlights the presence of two different clusters.

teria [38, 48, 58]. To handle a large number of samples, Frey [16]
generated a hierarchical grid layout by simultaneously optimizing the
similarity between neighbors and the homogeneity within each node in
the hierarchy. There are some treemap-based methods that visualize
samples in a hierarchical grid format [3,4]. However, these methods do
not consider the proximity between samples within each cluster.

Projection-based methods first utilize a dimensional reduction tech-
nique to project the samples onto a 2D space without the grid con-
straints. Then the final layout is generated by moving samples from
the projected positions to the grid cells [14, 17, 18, 20]. For example,
IsoMatch [17] uses IsoMap to project images onto a 2D space. After
building the bipartite graph between the projected positions and grid
cells, the grid layout is obtained by finding the bipartite matching that
minimizes the total distance moved. Since it is time-consuming to
solve the bipartite matching problem, later studies attempt to accelerate
the process of assigning projected samples into cells. Chen et al. [9]
developed a kNN-based bipartite graph matching, which speeds up
the algorithm by reducing the number of candidate grid cells for each
sample. Additionally, a grid layout can be generated by removing the
overlap between projected samples and then aligning them. DGrid [20]
recursively bisects the projected samples until each partition contains
exactly one sample. The partition result is then aligned with a regular
grid layout. CorrelatedMultiples [31] uses a force-directed graph layout
method to remove the overlap between samples and then aligns the sam-
ples horizontally and vertically to form a grid layout. This technique
is also used to lay out a clustered graph in a grid format [23]. How-
ever, when the samples are unevenly projected on a 2D space, these
alignment techniques can result in large movements from projected
positions to grid cells. To address this issue, VRGids [18] employs
the Voronoi relaxation to scatter the projected samples evenly on a
bounded 2D space before assigning them to cells, which reduces the
total movements.

Although the aforementioned methods have been proven effective
in preserving the proximity relationships between data samples, they
do not explicitly consider the cluster structures within the data. Con-
sequently, they face difficulties when tasked with preserving such struc-
tures. Our layout method starts from a grid layout generated by any
of these methods and then enhances the compactness and convexity of
each cluster shape to preserve cluster structures. When handling a large
number of samples, a flat grid layout encounters the scalability issue in
displaying all the samples clearly in one view. Our method can either
utilize the existing hierarchy in the input layout or build the hierarchy us-
ing sampling techniques [9]. At each level of the hierarchy, our method
enhances compactness and convexity to preserve the cluster structures.

3 USER STUDY ON CONVEXITY

The user study has two goals: first, to determine which measures
closely align with human perception, and second, to explore whether
variations in grid size and cluster number influence people’s perception

of convexity. To achieve these goals, three hypotheses have been
formulated to guide the design of our user study:
H1: There exists a convexity measure that aligns with the perception
of most people.
H2: The grid size influences people’s perception of convexity.
H3: The cluster number influences people’s perception of convexity.

3.1 User Study Design

Selection of convexity measures. For the 10 convexity measures
introduced in Sec. 2.1, we excluded 3 measures due to their high
time complexity: two of them require computing convex skulls with a
time complexity of O(N7) [5, 54], and one requires finding maximally
overlapping convex shapes with a time complexity of O(2N) [43] (N
is the number of vertices). Fig. 3 shows the Pearson correlations
between the implemented convexity measures calculated on 9,689
different shapes. Further details of this experiment are summarized in
supplemental material. The results in Fig. 3 indicate the seven measures
are roughly classified into two clusters that correspond to the area-based
measures and boundary-based measures, respectively. The correlations
between four area-based measures are strong, and so are the correlations
between three boundary-based measures. Due to the high correlations,
we selected the representative measures rather than using all of them
in the user study, thus making it easier for participants to compare
multiple grid visualizations optimized for different measures.

Among the four area-based measures, area ratio [49] is selected first
because it has a relatively weak correlation (r < 0.9) with the other three
measures and cannot be represented by them. Of the remaining three
highly-correlated area-based measures, we selected triple ratio [19]
since it has stronger correlations with the other two measures (0.98 and
0.97). In addition, triple ratio is more efficient to be computed than
Žunić’s method [61], and also provides more precise measurements
than Rahtu’s method [42]. Among the three boundary-based measures,
perimeter ratio [39] and Žunić’s method [54] are both based on the
perimeter and are highly correlated (0.91). We selected perimeter ratio
because its calculation is more efficient (O(N logN)) than the latter
(O(N2)). We also chose to include cut ratio [12] because it has a
relatively weaker correlation (r < 0.9) with the other two measures.
The definitions of the four selected measures are provided below:
a
b
c
d e

Area ratio (A) is defined as the ratio of the area of shape
to the area of its convex hull. In this example, the length
of each side of the squares is 1. Thus, the area of the shape
is 5, and the area of the convex hull is 5+1.5 = 6.5. The
convexity score is calculated as 5/6.5 ≈ 0.769.

a
b
c
d

f
e

Triple ratio (T) is defined as the probability that, for a
collinear triple (X ,Y,Z), if both cells X and Z are inside
the shape, then cell Y is also inside the shape. In this exam-
ple, there are 8 collinear triples of which both endpoints
are located inside the shape (e.g. , (a,b,c) and (a,b,e)).

However, the interior cell of 2 triples ((a, f ,e) and (b, f ,e)) lies outside
the shape. Thus, the convexity score is calculated as (8−2)/8 = 0.75.
a
b
c
d e

10

3
1

Perimeter ratio (P) is defined as the ratio of the perimeter
of the convex hull to the perimeter of the shape. In this
example, the perimeter of the convex hull is 8+

√
10, and

the perimeter of the shape is 8+ 4 = 12. The convexity
score is calculated as (8+

√
10)/12 ≈ 0.857.

a
b
c
d e

Cut ratio (C) is proposed based on the property that for a
convex shape, all tangents to its boundary will not intersect
its interior. It calculates, for each edge in the boundary,
the ratio of the part cut by the tangent. The convexity
measure is then defined as the average ratio over all the

edges. In this example, the convexity score is calculated as (1× 8+
0.8×3+0.4×1)/12 = 0.9.
Participants. We recruited 54 participants (44 male and 10 female)
in the experiment, including faculty members, researchers, developers,
and graduate students with industry/research experience in visualiza-
tion, computer graphics, computer vision, or mathematics. They have
used grid layouts to explore data in their research/development. The



participants come from 3 countries and 9 institutions. The diversity in
expertise, experience, and affiliations ensures that our recruited partici-
pants are representative. Among the 54 participants, all have knowledge
of convexity, none reported color blindness or color weakness, and 41
of the participants are very familiar with grid visualizations. Upon
completion, each participant was rewarded a $20 gift card.
Study procedure. At the beginning of the study, participants were
presented with a tutorial video that introduced the definition of convex
polygons and the user interface of the study system. After watching
the video, the participants began a practice session with six trials. The
answers and corresponding explanations were displayed after partici-
pants submitted their results. After completing the practice session and
indicating their full understanding of the concept of convex polygons
and the study interface, the participants proceeded to the formal study
with 36 trials, in which answers were no longer displayed. Participants
were instructed that they could take a brief break after completing every
nine trials. Following the completion of all trials, they were asked to fill
out a questionnaire that included personal information and a question
asking them to explain how they compare the convexity of different
grid visualizations. The entire process took approximately 40 minutes.
The study received approval from the University Ethics Committee.
Trials and stimuli. To validate H1, in each formal trial, the participants
were asked to rank four different grid visualizations, each optimized
for one of the four selected convexity measures. This enabled the
ranking results to reflect their preference for the convexity measures.
Before the formal study, we provided six practice trials to ensure that
the participants correctly understood the concept of convex polygons.
The stimuli in each practice trial consisted of four grid visualizations
arranged in descending order on all four convexity measures.
Conditions and design. To validate H2 and H3, we manipulated two
variables, the grid size and the cluster number, to control for their
effects. In practical applications, the maximum grid size is typically
restricted to 40x40 to ensure that each cell has enough space to display
data clearly. Therefore, we chose three different grid sizes: 20x20,
30x30, and 40x40 in the experiment. We selected three cluster numbers
of 3, 5, and 10 because analyzing a large number of clusters simul-
taneously can be challenging to the participants. To generate trials
for each condition, we used four datasets, Animal [11], MNIST [28],
CIFAR10 [27], and USPS [22], each of which contains 10 clusters. A
full-factorial within-subjects design was used to evaluate the effects of
the grid size and cluster number. As a result, for each participant, a
total of 36 trials (3 grid sizes × 3 cluster numbers × 4 datasets) were
evaluated in the formal study. The orders for the grid sizes and cluster
numbers were counterbalanced using a Latin Square Design.

3.2 Result Analysis
H1: There exists a convexity measure that aligns with the perception
of most people (partially confirmed).

We analyzed the ranking results to determine if there is a specific
convexity measure that was preferred by the majority of the partici-
pants. We first processed the ranking result of each participant. If a
participant chooses = between two measures, their ranks will be the
average of the ranks. For example, if a participant ranks the measures
as A > T > P = C, their ranks will be 1, 2, 3.5, and 3.5. The ranking
result of each participant is computed by averaging his/her ranks over
all the trials. Next, we conducted Friedman tests to compare the ranks
of different measures on all the participants. However, the tests showed
no significant differences between the measures. Upon further examina-
tion of the ranking results, we observed that there was a large variance
in the rankings for T and P: some participants ranked T highest and
ranked P lowest, while others ranked P highest and ranked T lowest.
This diversity led to the large variances and made the differences not
significant. In addition, we found a strong correlation between two
boundary-based measures P and C (0.955). This indicates that par-
ticipants who preferred the boundary-based measure P also tended to
prefer the boundary-based measure C. Similarly, a strong correlation
was found between the two area-based measures A and T (0.926). We
obtained the boundary rank for each participant by averaging the ranks
of P and C, and the area rank by averaging the ranks of A and T. It
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(a) Distribution of area ranks of 54 participants.

(b) Distribution of the most preferred measures of 54 participants.

Fig. 4: Examine the distribution of area ranks and most preferred
measures of 54 participants. Among these participants, 39 preferred
area-based measures (orange), while the other 15 preferred boundary-
based measures (blue).

is important to note that the sum of the boundary rank and area rank
always adds up to five. Therefore, it is sufficient to analyze only one
of them. Fig. 4(a) shows the distribution of area rank. There were two
distinct groups of participants, where 39/54 (72.2%) of them preferred
the area-based measures (area rank< 2.5), while the remaining (15/54,
27.8%) preferred the boundary-based measures (area rank> 2.5).

Next, we investigated the measures that were most preferred by
each participant. Surprisingly, 35 of them ranked T highest, and 15
of them ranked P highest (Fig. 4(b)). The result indicates that most of
the participants who preferred area-based measures ranked T higher
than A (35/39, 89.7%), whereas all the participants who preferred
boundary-based measures ranked P higher than C (15/15, 100.0%). We
thus performed Friedman tests again to compare the ranks of different
measures for the two groups of participants separately. The results
showed that for participants who preferred area-based measures (Fig. 5
Left), the difference among the four measures was significant (χ2(3) =
98.64, p < 0.001). The corresponding effect size was 0.8612, which
also indicated a great difference between different measures. The
pairwise Wilcoxon signed-rank test results further indicated a strict
preference order of T > A > C > P. For participants who preferred
boundary-based measures (Fig. 5, Right), the difference among the
four measures was also significant (χ2(3) = 43.88, p < 0.001), and
the pairwise Wilcoxon test results showed a strict preference order of
P > C > A > T. The corresponding effect size was 0.9751, which
again indicated a great difference between different measures. It is
important to note that this order is the exact reverse of the order found
in participants who preferred area-based measures. Based on these
findings, we concluded that no single measure aligns perfectly with
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Fig. 5: Friedman tests and pairwise Wilcoxon signed-rank tests on four
measures. Left: the participants who preferred area-based measures
have a strict preference order of T > A > C > P; Right: the participants
who preferred boundary-based measures have a strict preference order
of P > C > A > T. Significance levels are denoted by asterisks: *
indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001.
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Fig. 6: Compare the ranks of convexity measures for different grid
sizes and different cluster numbers. The grid size influences people’s
perception of convexity, while the cluster number does not. The tables
present the results of the pairwise Wilcoxon signed-rank test on the
area rank. Significance levels are denoted by asterisks: * indicates
p < 0.05,** indicates p < 0.01, and *** indicates p < 0.001.

the perception of all participants. However, measure T and measure
P are the representative of area-based measures and boundary-based
measures, respectively. For those who preferred area-based measures,
measure T aligns best with their perception, and for those who preferred
boundary-based measures, measure P aligns best with their perception.
Therefore, H1 is partially confirmed.
H2: The grid size influences people’s perception of convexity (con-
firmed). Initially, we considered conducting a two-way ANOVA test
to analyze the effects of the grid size and cluster number, given that
there are two independent variables. The interaction effect between the
two variables was not significant in the ANOVA test, suggesting that
their effects can be analyzed separately. Additionally, our data violated
the normality assumption. To analyze these two variables separately,
we utilized the nonparametric Friedman test and pairwise Wilcoxon
signed-rank tests, which do not depend on the normality assumption.

We first analyzed the effect of the grid size on the ranks of two
representative measures, measure T and measure P, which respectively
represent area-based and boundary-based measures. However, we did
not observe any significant effect. After conducting a more thorough
analysis, we noticed that participants who strongly preferred measure T
and P consistently ranked these measures highest, and that varying the
grid size had little effect on their ranking results. Therefore, we shifted
our focus to analyzing the area rank (A+T)/2 rather than analyzing
solely the rank of measure T, which was a more robust approach to the
analysis. The effect of the grid size on the area rank becomes significant
(χ2(2) = 14.91, p < 0.001). In addition, we observed that the area
rank consistently decreased as the grid size increased, as illustrated
in Fig. 6 left. The pairwise Wilcoxon test results further confirmed
significant differences between the area rank for different grid sizes.
Therefore, we concluded that as the grid size increases, the area-based
measure aligns better with people’s perception. H2 is confirmed.
H3: The cluster number influences people’s perception of convexity
(rejected). Similarly, we conducted the Friedman test and pairwise
Wilcoxon signed-rank tests to investigate the effect of the cluster num-
ber on the rank of measure T, the rank of measure P, and the area
rank. There was no significant effect of the cluster number on any of
these ranks. Additionally, the pairwise Wilcoxon test results showed no
significant differences in area ranks between different grid sizes (Fig. 6
right). Based on these findings, we concluded that the cluster number
does not influence the perception of convexity. H3 is rejected.

3.3 Participant Feedback
We analyzed participants’ feedback on how they compared the con-
vexity of different grid visualizations, and we also conducted inter-
views with ten participants to gather further insight into their judgment-
making process. Among the ten participants, seven preferred area-based
measures, while the remaining three preferred boundary-based mea-
sures. Participants who favored area-based measures tended to overlook

small zig-zags along a boundary and instead viewed the boundary as a
line segment. One faculty member commented that the anti-aliasing
effect in the human visual system could explain this judgment. Accord-
ing to this theory, these zig-zags become less noticeable with increasing
grid sizes, which is consistent with our user study findings. Two faculty
members with a research interest in computer graphics mentioned that
they tended to compare the grid visualizations with the corresponding
Voronoi diagrams when making judgments. They regarded a signif-
icant difference between the two as a sign of poor convexity. This
explains why they do not like the layout optimized for boundary-based
measures: a shape tends to become during the optimization of
boundary-based measures, resulting in a larger difference compared to
the corresponding Voronoi diagram. In contrast, the participants who
preferred boundary-based measures usually paid more attention to the
number of zig-zags on the boundary. They generally preferred a cluster
shape with fewer edges along its boundary.

4 CLUSTER-AWARE GRID LAYOUT METHOD

Local adjustment

swap boundary cells

Global assignment

balance proximity
and compactness

Fig. 7: Our layout pipeline: our method first balances proximity and
compactness in the global assignment phase, and then improves the
convexity by swapping the boundary cells in the local adjustment phase.

4.1 Design Principles
Our cluster-aware grid layout method aims to improve the analysis
efficiency by enhancing the recognition of clusters [7, 26]. This is well
aligned with the Gestalt principles of perceptual grouping [32,45,51,55].
These principles investigate how certain elements tend to be perceived
as a group. They can be classified into two categories: layout-irrelevant
principles and layout-relevant principles. Layout-irrelevant principles
describe how visual elements are grouped regardless of their spatial
arrangement, which includes similarity, common fate, connectedness,
and common region. In contrast, layout-relevant principles depend on
the spatial relationships between elements, which include proximity,
compactness, symmetry, and convexity. Our layout method is based on
layout-relevant principles. Since the convexity principle overrules the
symmetry principle [24], we employ the following three principles to
develop a cluster-aware grid layout method:
Proximity: Similar samples should be placed close to each other.
Compactness: Samples in the same cluster should be placed in a
compact form.
Convexity: Samples in the same cluster should form a convex shape.

4.2 Measuring Cluster Preservation
The key in developing our layout method is to quantify the three mea-
sures that correspond to the three selected Gestalt principles.
Proximity. To preserve proximity in a grid layout, the samples with
higher similarity should have smaller Euclidean distances between
their corresponding cell positions. Let S = {s1,s2, . . . ,sn} denote the
samples and {g(s1),g(s2), . . . ,g(sn)} denote their corresponding cell
positions. Given two samples si and s j, their similarity is denoted as
ci j ∈ [0,1], and their Euclidean distance on the grid is computed by
∥g(si)−g(s j)∥, where ∥·∥ is the Euclidean norm. The proximity of a
grid layout is then determined by:

Prox = ∑
n
i=1 ∑

n
j=1

(
w∥g(si)−g(s j)∥− (1− ci j)

)2
, (1)

where w is a scaling factor to ensure that the first term ranges from 0 to
1. A smaller proximity value indicates better preservation of proximity.
Compactness. Proximity does not consider the cluster information
and cannot guarantee the samples within the same cluster form a
compact shape. To preserve compactness, samples should be placed
closer to their corresponding cluster centers. Following Rottmann’s



method [45], the compactness of the grid layout is measured by the total
distance between the cell position of each sample and its corresponding
cluster center:

Comp = ∑
n
i=1∥g(si)−µi∥2, (2)

where µi is the corresponding cluster center of sample si. It is computed
as the average cell position over the samples in the same cluster as si.
A smaller compactness value indicates a more compact layout.
Convexity. As described in Sec. 3.1, there are four representative
convexity measures, area ratio, triple ratio, perimeter ratio, and cut
ratio. The quantifying method of each measure for a polygon is also
introduced in this section. Once a user selects one of the aforementioned
measures, the convexity of a grid layout is calculated as the average
convexity score over all the cluster shapes in the grid layout.

4.3 Layout Algorithm
Optimization strategy. Given the large search space spanning over
proximity, compactness, and convexity, it is impractical to achieve a
perfect balance among the three measures. Our analysis of the calcula-
tion of these three measures reveals that proximity and compactness are
affected by all grid cells, whereas convexity is sensitive to the boundary
cells between different clusters. Based on this finding, we employ a
global-local strategy to simplify the optimization process. As shown
in Fig. 7, the global assignment achieves a good balance between prox-
imity and compactness. The local adjustment swaps the boundary cells
between clusters to improve convexity without apparently affecting
the achieved proximity and compactness. The effectiveness of the
global-local strategy is demonstrated in the ablation study (Table 1).
Global assignment. The goal of this phase is to generate a global layout
that simultaneously optimizes proximity and compactness. Instead of
directly optimizing proximity defined in Eq. (1), we take a grid layout
generated by a proximity-preserving method as input and then minimize
the distance between the input layout and our layout. This offers the
flexibility to integrate any existing proximity-preserving method into
our layout pipeline. Let V = {v1,v2, . . . ,vn} denote the grid cells.
Without loss of generality, we set vi as the input cell position of si.
Our layout can be viewed as a new assignment from the samples S to
the grid cells V , which is denoted by a binary matrix δ = {δi j}1≤i, j≤n.
Here, δi j = 1 indicates that si is assigned to v j (i.e. , g(si) = v j), and
otherwise, δi j = 0. The proximity of the layout is measured by its
distance to the input layout:

Prox(δ) = ∑
n
i=1∥g(si)− vi∥2 = ∑

n
i=1 ∑

n
j=1∥v j − vi∥2

δi j. (3)

With the notation δ, the compactness can be rewritten as:

Comp(δ) = ∑
n
i=1∥g(si)−µi∥2 = ∑

n
i=1 ∑

n
j=1∥v j −µi∥2

δi j. (4)

To simultaneously optimize proximity and compactness, the measures
defined in Eqs. (3) and (4) are combined, and the global layout is
achieved by minimizing

minimize
δ

∑
n
i=1 ∑

n
j=1

(
λ∥v j − vi∥2 +(1−λ )∥v j −µi∥2

)
δi j,

subject to ∑
n
i=1 δi j = 1, ∀ j ∈ {1,2, . . . ,n},

∑
n
j=1 δi j = 1, ∀i ∈ {1,2, . . . ,n},

δi j ∈ {0,1}, ∀i, j,

(5)

where 0 ≤ λ ≤ 1 is the weight to balance proximity and compact-
ness. The constraints ensure a one-to-one assignment from samples
to grid cells. The optimization problem defined in Eq. (5) is a linear
assignment problem and can be efficiently solved with an accelerated
Jonker-Volgenant algorithm [9].

Determining weight λ that balances proximity and compactness is
crucial for generating a global layout that achieves good results. Using a
fixed value, such as λ = 0.5, may not be optimal for all cases, and manu-
ally tuning the parameter is labor-intensive and requires expertise. Thus,
we employ the multi-task learning method proposed by Liu et al. [30]

to determine λ . The key idea is to increase the weight of the task with
poor performance so that it can be further improved. To assess the per-
formance of each task, we compare the current proximity/compactness
score with its optimal one. Specifically, we first obtain the layout with
the optimal proximity δp, which is the input layout, and the layout
with the optimal compactness δc, which is computed by optimizing
compactness solely. The performance of optimizing proximity is deter-
mined by ∆Prox = (Prox(δ)− Prox(δp))/(Prox(δc)− Prox(δp)), and the
performance of optimizing compactness is determined by ∆Comp =
(Comp(δ)−Comp(δc))/(Comp(δp)−Comp(δc)). Once the performance
of both tasks is determined, we calculate λ as ∆Prox/(∆Prox +∆Comp)
and update the layout with the new weight. The above procedure is
repeated until the layout converges.
Local adjustment. After obtaining the global layout, the local ad-
justment improves convexity by swapping the boundary cells between
different clusters. In our implementation, a cell is considered to be a
boundary cell if at least one of its neighboring cells within a 3x3 region
belongs to a different cluster. We only swap boundary cells since they
directly impact convexity. At each iteration, a boundary cell is randomly
selected, and all possible swaps between the selected cell and other
boundary cells are enumerated. The convexity is evaluated after each
swap, and the optimal swap that increases convexity most is chosen.
The iterative process stops when all the boundary cells are processed.
Supporting hierarchical grid layout. The two-phase layout method
creates a flat grid layout that simultaneously optimizes proximity,
compactness, and convexity. When handling a large number of samples,
a hierarchical grid layout is necessary to support level-of-detail
exploration. If the input is a hierarchical layout, our method enhances
compactness and convexity at each level of the hierarchy while
preserving proximity. Otherwise, our method creates a hierarchy using
the sampling-based technique described in Chen et al. ’s work [9].
It first samples a set of representative samples and creates the grid
layout at the top level. The remaining samples are assigned to their
closest representative sample. When the user selects a sub-region for
exploration, the selected samples and some of the samples assigned
to them are used to generate a grid layout in the same way. For both
methods, we try to preserve the relative positions of the previously
displayed samples for maintaining the mental map during exploration.

5 EVALUATION

5.1 Quantitative Evaluation

5.1.1 Datasets and Experimental Settings

Datasets. We evaluated the effectiveness of our layout method on 11
datasets. Ten of them (Animals, Cifar10, Indian Food, Isolet, MNIST,
Stanford Dogs, Texture, USPS, Weather, Wifi) are from Xia et al. ’s
work [56], while an additional dataset, OoD-Animals, is from OoD-
Analyzer for data quality analysis [9]. There are eight image datasets,
two textual datasets (Isolet and Texture), and one tabular dataset (Wifi).
More details of these datasets are in supplemental material. For images,
we used CLIP [41], a state-of-the-art pre-trained model to extract the
feature vectors. For textual data and tabular data, we used the feature
vectors provided by the dataset. The cluster labels of each dataset were
set as the predictions, which were obtained using the k-NN classifier,
where k was determined using cross-validation.
Experimental settings. The baseline is the state-of-the-art proximity-
preserving grid layout method proposed by Chen et al. [9]. The method
first projects samples into a 2D space using t-SNE, and then assigns the
projected samples to cells by solving a linear assignment problem. Ours-
G improves compactness only through the global assignment, while
Ours-L(T) and Ours-L(P) only use local adjustment to improve triple
ratio (area-based) or perimeter ratio (boundary-based). We chose these
two measures because they were representative of area-based measures
and boundary-based measures, respectively. We also evaluated the
performance of different combination orders of the global phase and
local phase, which resulted in four more methods: Ours-L(T)-G, Ours-
L(P)-G, Ours-G-L(T), and Ours-G-L(P). In the following experiments,
we generate the grid layouts using 3 different grid sizes: 20x20, 30x30,
and 40x40, consistent with the grid sizes used in our user study.



Table 1: Comparison of six measures of all the methods. Baseline: OoDAnalyzer [9]; G: global; L: local; T: triple ratio; P: perimeter ratio.

Measure Baseline Ours-G Ours-L(T) Ours-L(P) Ours-L(T)-G Ours-L(P)-G Ours-G-L(T) Ours-G-L(P)

Proximity 1.000 0.996 0.998 0.992 0.997 0.996 0.996 0.994
Compactness 0.964 0.970 0.967 0.963 0.969 0.970 0.970 0.968
Area ratio 0.669 0.882 0.900 0.852 0.869 0.883 0.913 0.895
Triple ratio 0.936 0.991 0.995 0.954 0.989 0.991 0.997 0.978
Perimeter ratio 0.812 0.834 0.857 0.926 0.833 0.835 0.866 0.935
Cut ratio 0.802 0.870 0.872 0.913 0.866 0.872 0.890 0.934

Table 2: Comparison of six measures of the baseline (OoDAnalyzer [9]), Ours-T, and Ours-P with 3 different grid sizes.

Grid size Proximity Compactness Area ratio Triple ratio Perimeter ratio Cut ratio
Basel. Ours-T Ours-P Basel. Ours-T Ours-P Basel. Ours-T Ours-P Basel. Ours-T Ours-P Basel. Ours-T Ours-P Basel. Ours-T Ours-P

20x20 1.000 0.996 0.993 0.965 0.970 0.968 0.750 0.898 0.896 0.951 0.995 0.976 0.843 0.875 0.938 0.839 0.895 0.935
30x30 1.000 0.996 0.994 0.964 0.970 0.969 0.664 0.916 0.897 0.938 0.997 0.979 0.816 0.865 0.935 0.801 0.891 0.935
40x40 1.000 0.995 0.993 0.962 0.970 0.969 0.591 0.926 0.893 0.919 0.998 0.978 0.775 0.858 0.933 0.766 0.885 0.932

Evaluation criteria. We used six measures to evaluate the quality of
the grid layout: proximity, compactness, and four convexity measures,
including triple ratio, area ratio, perimeter ratio, and cut ratio. The
scores of the four convexity measures range from 0 to 1, and a higher
score indicates better convexity, whereas the proximity and compact-
ness scores (Eqs. (3) and (4)) range from 0 to infinity, and a smaller
score indicates better proximity/compactness. To facilitate comparison,
we apply the transformation x 7→ exp(−x) to the proximity and com-
pactness scores, such that they are normalized to a range of 0 to 1, and
a higher score indicates better proximity/compactness.

5.1.2 Ablation Results
Our study was designed to examine the impacts of both the global
assignment phase and the local adjustment phase. The effectiveness
was demonstrated by comparing the associated methods using the six
measures. The results presented in Table 1 were averaged over the 11
datasets and 3 grid sizes, and full results are available in supplemental
material. All our methods preserved proximity well, with scores above
0.99. Thus, our analysis mainly focused on compactness and convexity.
Compared with the baseline, Ours-G improved compactness from 0.964
to 0.970. Moreover, it also showed improvement on all four convexity
measures, with more notable improvement on the area-based ones (area
ratio and triple ratio). This is because the optimization of compactness
leads to regular cluster shapes, which have higher scores in area-based
measures. Regarding convexity measures, Ours-L(T) performed better
than baseline/Ours-G/Ours-L(P) in terms of the area ratio and triple
ratio, while Ours-L(P) surpassed baseline/Ours-G/Ours-L(T) with re-
spect to the perimeter ratio and cut ratio. This indicates that optimizing
an area-based convexity measure can lead to a large improvement on
the other area-based measures due to their related optimization goals.
The same applies to boundary-based measures.

Moreover, our ablation study explored the optimal order to combine
the global assignment phase and the local adjustment phase. It was ob-
served that the results of Ours-G, Ours-L(T)-G, and Ours-L(P)-G were
quite similar. This indicates that the changes made in the global assign-
ment phase have a greater influence than those in the local adjustment
phase. Therefore, the local adjustment should be conducted after the
global assignment. The comparison between Ours-G-L(T)/Ours-G-L(P)
and Ours-G reveals that the local adjustment phase further improves
convexity without apparently affecting the proximity and compact-
ness achieved in the global assignment phase. Moreover, Ours-G-L(T)
performed better than Ours-L(T) in terms of the area ratio and triple
ratio, and Ours-G-L(P) performed better than Ours-L(P) regarding the
perimeter ratio and cut ratio. This indicates that the global assignment
phase provides a better initial layout for the local adjustment phase,
leading to a larger improvement on convexity measures. Therefore, we
choose Ours-G-L(T) and Ours-G-L(P) as the primary methods, which
are abbreviated as Ours-T and Ours-P in the following experiments.

5.1.3 Comparison Results
Table 2 provides a detailed comparison between the baseline and Ours-
T/Ours-P with 3 different grid sizes. The reported results were averaged
over 11 datasets. In terms of proximity and compactness, there were no
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Fig. 8: Comparison of the layouts generated by the baseline (OoDAna-
lyzer [9]), Ours-G, Ours-T, and Ours-P. Using our methods, samples
that fall into other clusters (A and B) are placed into their corresponding
clusters, and irregular boundaries between different clusters (C) become
regular (D, E, and F). Boundaries in Ours-G and Ours-T contain many
slanted segments (D, E, and G), while boundaries in Ours-P mainly
consist of horizontal and vertical segments (F and H).

significant differences across different grid sizes. Ours-T achieved the
highest compactness without affecting proximity too much. Compared
to Ours-T, Ours-P achieved relatively lower scores in both proximity
and compactness, but the differences were very small. Regarding
convexity measures, Ours-T performed best in terms of area-based
measures, while Ours-P performed best in terms of boundary-based
measures. This indicates that our methods can fulfill the requirements of
individuals who prefer either area-based or boundary-based measures.
When comparing the convexity scores across different grid sizes, it is
notable that while the convexity scores achieved by the baseline method
decrease as the grid size increases, the scores of area-based measures
achieved by Ours-T increase with larger grid sizes. After analyzing
the calculation of area-based measures, it is discovered that the small
zig-zags on the boundaries between different clusters have less impact



on area-based measures as the grid size increases. As a result, Ours-T
achieved higher area ratios and triple ratios with larger grid sizes. In
contrast, the calculation of boundary-based convexity measures is not
affected by the changes in grid size. Therefore, Ours-P did not achieve
higher perimeter ratios or cut ratios with larger grid sizes.

Fig. 8 presents the layout results generated by the baseline, Ours-
G, Ours-T, and Ours-P on six example datasets. The full results are
summarized in supplemental material. In the layouts generated by
the baseline, some samples fall into the clusters they do not belong to
(Fig. 8A and B), and the boundaries between different clusters are irreg-
ular (Fig. 8C). After the global assignment phase, the samples within
the same cluster are grouped together, and the boundaries become more
regular (Fig. 8D). It is also noted that the results generated by Ours-G
are similar to Ours-T, which is consistent with our findings that Ours-G
achieves a more notable improvement on the area-based convexity mea-
sures in Sec. 5.1.2. Further comparison between Ours-G and Ours-T
reveals that the boundaries generated by Ours-T are closer to line seg-
ments (Fig. 8E) than Ours-G, leading to higher area-based convexity
scores. In contrast, the boundaries generated by Ours-P mainly consist
of horizontal and vertical line segments (Fig. 8F), making the layout
results dissimilar from the results generated by Ours-G and Ours-T. It
is also observed that a shape (Fig. 8G) tends to be optimized towards

(Fig. 8H), which has higher boundary-based convexity scores but
lower area-based convexity scores.

5.1.4 Running Time

We evaluated the running time of our methods for 3 grid sizes on a
desktop PC with an Intel i9-13900K CPU (5.0 GHz). The results were
averaged over 11 datasets. As shown in Table 3(a), our methods gener-
ated a 30x30 grid layout in less than 1 second, and a 40x40 grid layout in
around 3 seconds. Moreover, the results indicated that the global assign-
ment phase consumed most of the time. Further analysis revealed that,
on average, the optimal value of λ required solving the linear assign-
ment problem approximately six times. This process can be accelerated
if λ is fixed. A practical way to find an appropriate λ is to test different
values on a set of representative datasets and choose the one that works
well for most of them. As shown in Table 3(b), the running time of
Ours-G approximately equals that of the baseline when λ is fixed, and
the total time of our methods (Ours-T and Ours-P) is a little bit longer.
For example, when generating a 40x40 grid layout, the baseline takes
0.319 seconds, and Ours-P and Ours-T take 0.961 and 1.513 seconds,
respectively. Previous research has shown that a minimum size of
32x32 pixels is required to identify important objects in an image [52].
Taking a display with a resolution of 1920x1080 as an example, each
cell in a 40x40 grid has a maximum width of only 1080/40 = 27 pixels,
which is below the minimum size. Thus, our methods closely approach
the real-time requirements of most applications.

Table 3: Running time comparison (in seconds) of different methods to
generate grid layouts with different sizes. Baseline: OoDAnalyzer [9].

(a) Adaptive λ in the global assignment phase.

Method 20x20 30x30 40x40

Ours-G 0.059 0.396 1.821
Ours-T 0.101 0.709 3.050
Ours-P 0.133 0.636 2.465

(b) Fixed λ in the global assignment phase.

Method 20x20 30x30 40x40

Baseline 0.013 0.081 0.319

Ours-G 0.009 0.064 0.291
Ours-T 0.055 0.377 1.513
Ours-P 0.092 0.309 0.961
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Fig. 9: Compared with the baseline (a), the samples predicted as “4”
(A and B) are merged into the cluster of “4” in our layout (b).

5.2 Use Cases
We present two use cases to showcase how our layout method facil-
itates 1) identifying misclassified samples; and 2) analyzing out-of-
distribution (OoD) samples.

5.2.1 Identifying misclassified samples
This use case illustrates how our method aids in identifying misclassi-
fied samples in a classification task. We used the USPS dataset [41],
which consists of 9,298 gray-scale images of handwritten digits from 0
to 9. As in the quantitative experiments, feature vectors were extracted
using CLIP [41], and predictions were generated using a k-NN classifier
(accuracy: 93.27%). Four classes, 1/4/7/9, were chosen for analysis
because most of the misclassifications happened among the samples of
these four classes. As the ground-truth labels are not available, users
need to examine the samples in the grid layout to identify misclassified
samples. To facilitate the identification, samples with the same predic-
tions were treated as a single cluster, and we utilized both position and
color to encode cluster structures.

Figs. 9(a) and (b) show a part of the grid layouts generated by the
baseline and Ours-T, respectively. We chose Ours-T because the triple
ratio is the most favored measure in our user study. In the baseline
layout (Fig. 9(a)), the samples of “4” in Fig. 9A are placed far away
from the cluster of “4.” This arrangement may lead users to draw
the wrong conclusion that the model predicts these samples to be not
similar to “4.” However, these samples are similar to other samples of
“4” and are predicted as “4.” By preserving cluster structures (Fig. 9(b)),
these samples are merged into the cluster of “4” (Fig. 9A′), which
reduces false inferences. Furthermore, misclassified samples, such as
the samples in Fig. 9B, which are “7” but misclassified as “4,” still
remain in the cluster of “4” and can be easily identified in the cluster-
aware layout.

5.2.2 Analyzing OoD samples
The second use case illustrates how our method facilitates the analysis
of OoD samples, the test samples that are not well covered by training
samples. Analyzing why OoD samples appear and adding correspond-
ing samples to the training data can boost model performance [9]. A
recent work, OoDAnalyzer [9], utilizes a grid visualization to help
analyze OoD samples. We were interested in whether our cluster-aware
grid layout could further improve analysis efficiency and help identify
more OoD samples. Therefore, we invited one author of OoDAnalyzer
(E1) to conduct the analysis on the OoD-Animals dataset, which was
used in the case study of OoDAnalyzer. This dataset contains 7,270
training samples and 19,413 test samples of five categories: cat, dog,
rabbit, tiger, and wolf. Following OoDAnalyzer, the color hue encodes
the prediction. The color saturation encodes the OoD score, and a
darker color indicates a larger OoD score that warrants examination.
Similar to the first use case, samples with the same predictions were
treated as a single cluster.

E1 first compared the grid layout used in OoDAnalyzer (Fig. 1(c))
and the corresponding grid layout generated by Ours-T (Fig. 1(d)). The
OoD samples found in the previous work [9] can be easily identified
in our layout. For example, in Fig. 1(c), some dark blue cells (cat) fell
into different regions C1–C3. After examining the samples in these
three regions one by one, E1 found that all these dark blue cells were
the samples of “leopard.” Since there was no category “leopard” in
the training data, these samples were predicted as the most similar
category “cat” (blue) but had high OoD scores. However, it was hard to
analyze them in OoDAnalyzer because they were scattered into several
categories. This arrangement may even lead users to draw the wrong
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Fig. 10: After zooming into region Fig. 1D, more samples with high
OoD scores are identified (A and C). Our layout also reveals that some
samples with only part of an animal (B) are misclassified as “rabbit”
due to a low-quality training sample with only the hair of a rabbit (B1).

conclusion that the model predicts the samples in C3 to be closely
related to “rabbit.” By preserving cluster structures (Fig. 1(d)), these
OoD samples of “leopard” were grouped together in the cluster of “cat”
(C′). This enables users to efficiently identify these OoD samples as
a whole and take the associated actions.

Our cluster-aware layout also helped identify more OoD samples
that were not identified in the previous work [9]. For example, the
samples with high OoD scores in Fig. 1D were not identified before
because they were not grouped together in OoDAnalyzer (Fig. 1(c))
and thus did not trigger examinations. E1 then zoomed into Fig. 1D
to examine these samples (Fig. 10). Upon examination, E1 discovered
that the samples with high OoD scores were “leopard” or “tiger” but
predicted as “wolf” (Fig. 10A) or “rabbit” (Fig. 10C). Furthermore,
during the examination, a new finding was discovered by E1. Many
samples that only included part of an animal were predicted as “rabbit”
(Fig. 10B). Upon further analysis, it was discovered that a low-quality
training sample with only the hair of a rabbit (Fig. 10B1) explained
why the model tended to recognize images with hair as “rabbit.”

5.3 Expert Feedback and Discussions

We interviewed three experts who are not co-authors of this work. E1
participated in the second use case, E2 is a senior computer vision
researcher who often utilizes the grid layout to explore image datasets,
and E3 is a mathematician with rich experience in convexity. Initially,
we introduced both OoDAnalyzer and its enhanced version that inte-
grates Ours-T as the layout method. Then the experts freely explored
the OoD-Animals dataset using both of the systems and compared the
layouts. We also collected their feedback during the exploration pro-
cess. Each interview lasted 40-60 minutes. Our layout method received
positive feedback from all the experts regarding its usefulness.
Enhancing cluster perception. All the experts agreed that our layout
method enhanced the cluster perception and aided in efficiently identify-
ing confused sample predictions. E2 commented that some light colors
used in the original OoDAnalyzer system were hard to differentiate
from each other, such as light brown and light purple . As a result,
it took him more time to recognize the predictions when the samples
with similar prediction colors were mixed together. Our method al-
leviated this by grouping samples with the same predictions together.
E1 indicated that enhancing cluster perception helped him find more
OoD samples. “As the samples with high OoD scores fall into different
regions in the original system, I missed some of them in my previous
analysis. The clear cluster structures in the new layout enable me to
identify more OoD samples easily and prepare better training data.”

Extensibility. The extensibility of our layout method comes from three
sources. First, our method takes a grid layout as input, which offers
the flexibility to integrate any existing layout method into our layout
process. In addition to an input grid layout, E1 pointed out that our
method could generate a grid layout based on a scatterplot by modifying
the proximity calculation. Therefore, existing dimensional reduction
techniques are readily integrated into our method for visualizing high-
dimensional data. Second, our method supports different convexity
measures to meet different analysis needs. For example, optimizing
area-based measures usually makes fewer adjustments and hence better
preserves both the achieved proximity and compactness. Optimizing
boundary-based measures tends to result in cluster shapes that are close
to the combinations of rectangles, making them suitable for smaller grid
sizes. Users can either choose a convexity measure from our provided
measures or even customize a measure that fits their goals. Third, the
global-local strategy can be extended to optimize other measures, such
as aesthetics and continuity. The global assignment can be used to
optimize measures that are affected by all the grid cells, while the local
adjustment can iteratively optimize measures that are only affected by
specific cells. For example, E3 noted that when continuity is a concern,
it is necessary to reject a swap operation that separates a cluster into
two disconnected parts.

The experts have also suggested two interesting research topics,
which provide insights for future studies.
Combining with other design variables. We have shown the effec-
tiveness of our method in enhancing the perception of cluster structures
by adjusting the positions of visual elements. E1 pointed out that in
addition to the positions, there were also other design variables that
could be used to enhance the cluster perception, such as color and
shape. Following the Gestalt principle of similarity [55], we can en-
code samples in the same cluster using the same color or shape. This
is already employed in our method. The principle of common region
also suggests that we can add contours to group the samples in the
same cluster. To further improve cluster perception, it is interesting
to investigate how to combine these methods effectively. In addition,
combining multiple methods together may cause cognitive overload.
Therefore, it is worth studying how to balance the trade-off between
enhancing cluster perception and avoiding cognitive overload.
Interactive editing. Although our method has provided a grid layout
that well preserves cluster structures, E2 expressed his need to further
adjust the grid layout based on his requirements. “Sometimes I
would like to locally modify the boundary to make it clearer or force
two similar samples to be placed adjacently.” It is worth exploring
user-friendly interactions that allow users to directly edit the layouts
toward their desired effects. For example, at the sample level, we
consider supporting users to move samples to the desired positions and
select multiple samples to add must-link/cannot-link constraints among
them. At the cluster level, users can sketch the desired cluster shapes or
change the convexity calculation of certain clusters. At the global level,
users have the flexibility to adjust λ , which balances the preservation
of the original layout and the preservation of cluster structures. The
larger the λ value, the better the original layout is preserved.

6 CONCLUSION

We present a cluster-aware grid layout method that enhances the per-
ception of cluster structures by optimizing proximity, compactness,
and convexity simultaneously. Starting from the input layout gener-
ated by any existing method, our method first optimizes proximity and
compactness together in the global assignment phase. Then, a local
adjustment phase swaps boundary cells between different clusters to
improve convexity. To determine the convexity measure used in the
local adjustment phase, we conducted a user study and identified two
representative measures, triple ratio and perimeter ratio, to accommo-
date the diverse preferences of users. The quantitative evaluations
demonstrate that our method achieves experimentally optimal balances
among proximity, compactness, and convexity. Two use cases are also
presented to demonstrate how our method can be practically useful in
exploring image datasets and analyzing model predictions.
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