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Fig. 1: Comparing traditional NL2VIS methods with our method: (a) Traditional methods often function as black boxes, making it difficult
for users to interpret design rationales or refine suboptimal results. (b) Our method leverages CoT reasoning, which enhances both
model performance and transparency, enabling users to better understand the model decision and interactively refine results.

Abstract—Although data visualization is powerful for revealing patterns and communicating insights, creating effective visualizations
requires familiarity with authoring tools and often disrupts the analysis flow. While large language models show promise for automatically
converting analysis intent into visualizations, existing methods function as black boxes without transparent reasoning processes, which
prevents users from understanding design rationales and refining suboptimal outputs. To bridge this gap, we propose integrating
Chain-of-Thought (CoT) reasoning into the Natural Language to Visualization (NL2VIS) pipeline. First, we design a comprehensive
CoT reasoning process for NL2VIS and develop an automatic pipeline to equip existing datasets with structured reasoning steps.
Second, we introduce nvBench-CoT, a specialized dataset capturing detailed step-by-step reasoning from ambiguous natural language
descriptions to finalized visualizations, which enables state-of-the-art performance when used for model fine-tuning. Third, we develop
DeepVIS, an interactive visual interface that tightly integrates with the CoT reasoning process, allowing users to inspect reasoning
steps, identify errors, and make targeted adjustments to improve visualization outcomes. Quantitative benchmark evaluations, two use
cases, and a user study collectively demonstrate that our CoT framework effectively enhances NL2VIS quality while providing insightful
reasoning steps to users.

Index Terms—Data visualization, automatic visualization, large language models

1 INTRODUCTION

Data visualization serves as a powerful tool in the data analysis pipeline,
enabling effective exploration, pattern recognition, and the communi-
cation of insights [21, 25, 27, 31, 68]. Despite its critical importance,
creating high-quality visualizations remains a challenging task that typ-
ically requires both specialized knowledge of visualization principles
and proficiency with complex authoring tools [30, 38, 46]. This tech-
nical expertise requirement presents a barrier for many data analysts,
particularly those without formal training in visualization design [58].
Even for experienced analysts, the process of switching between analy-
sis environments and authoring tools forces them to mentally translate
their analysis intent into the specific commands or parameters required
by authoring tools, which disrupts analysis flow and negatively affects
their productivity [59].
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Given these challenges, there is a compelling need for systems that
can automatically transform natural language descriptions of analysis
intent into appropriate visualizations. Such systems would enable ana-
lysts to remain focused on their primary task of data exploration and
insight discovery, rather than becoming distracted by the mechanism
of visualization creation. Recent advancements in large language mod-
els (LLMs) have demonstrated considerable promise for the Natural
Language to Visualization (NL2VIS) task, exhibiting remarkable capa-
bilities to interpret user intent and generate corresponding visualization
specifications [23, 58]. Such systems would enable analysts to remain
focused on their primary task of data exploration and insight discovery,
rather than becoming distracted by the mechanics of visualization cre-
ation [38]. However, despite their potential, current methods function
largely as black boxes, processing natural language inputs and produc-
ing visualization outputs without exposing the intermediate reasoning
steps (Fig. 1(a)). This opacity creates several critical limitations: First,
users cannot understand how or why specific visualization choices were
made, which reduces their trust in the model outputs. Second, when
faced with suboptimal outputs, users lack visibility into specific points
of failure within the reasoning process, which hinders their ability to
pinpoint and rectify problems. Third, users miss the valuable chance
to learn from the decision-making process of the model, which could
enhance their own visualization expertise.

To address these limitations, we propose integrating Chain-of-
Thought (CoT) reasoning into the NL2VIS pipeline (Fig. 1(b)), which
encourages LLMs to break down complex problems into intermediate
steps [4, 53]. First, we design a comprehensive CoT reasoning process
for the NL2VIS task and develop an automatic pipeline to equip ex-
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isting NL2VIS datasets with structured CoT reasoning steps. Based
on this, we introduce a new dataset, nvBench-CoT, which captures
the detailed step-by-step reasoning processes that connect ambiguous
natural language descriptions to finalized visualizations, mimicking the
design process of experienced analysts.

We then train an NL2VIS model on this dataset that explicitly incor-
porates CoT reasoning. Unlike existing black-box methods, our model
exposes the intermediate reasoning steps that guide the transformation
from natural language input to visualization output. This transparency
not only enables the model to achieve state-of-the-art performance but
also enables users to understand the rationale underlying visualization
choices and identify potential areas for improvement. We also develop
DeepVIS, an interactive visual interface that tightly integrates with
the CoT reasoning process. This interface empowers users to inspect
each step of the reasoning chain, identify potential errors or suboptimal
decisions, and strategically intervene by modifying specific reasoning
components to enhance the final visualization. By facilitating this form
of human-AI collaboration, our system effectively combines the ef-
ficiency of automated visualization generation with the judgment of
human analysts.

We evaluate our method through quantitative benchmark evaluation,
two use cases, and a user study. The results demonstrate that our CoT
framework significantly improves the quality and accuracy of NL2VIS
transformations compared to black-box methods. Furthermore, user
feedback indicates that the transparent reasoning process substantially
enhances trust in the model outputs while providing valuable learn-
ing opportunities that enable users to refine their own visualization
expertise. To summarize, our contributions are threefold:

• We design a comprehensive CoT reasoning process for the
NL2VIS task, which is used to guide the process of enhancing
NL2VIS datasets with structured reasoning steps.

• We introduce and curate nvBench-CoT, an NL2VIS dataset with
detailed reasoning steps, and achieve state-of-the-art performance
by fine-tuning models on this dataset.

• We develop a visual interface that tightly integrates with the
CoT reasoning process, which allows users to understand the
underlying reasoning and make targeted adjustments.

2 RELATED WORK

2.1 Chain-of-Thought (CoT)
While LLMs have demonstrated impressive performance, they often
face challenges when processing complex problems. The CoT tech-
nique addresses this by guiding LLMs to decompose complex problems
into a series of intermediate steps, thereby improving reasoning and
transparency [11, 53]. The effectiveness of CoT is significantly influ-
enced by the design of these intermediate steps. Therefore, several
strategies have been developed to generate high-quality reasoning steps,
such as zero-shot CoT that instructs the model to generate reasoning
steps [20, 22], few-shot CoT that provides the model with a few exam-
ples of similar problems with reasoning steps [45,53], Tree-of-Thought
that enables exploration of multiple reasoning paths and dynamic ad-
justment through backtracking [64], and interactive construction and
involve human in crafting the chain [56, 57], For a comprehensive
overview, we refer readers to recent surveys [4, 8]. In this work, we
systematically analyze NL2VIS and design a tailored CoT reasoning
pipeline, which effectively guides LLMs through the complex stages of
visualization generation and improves performance.

2.2 NL2VIS
Based on their underlying principles and implementation mechanisms,
existing NL2VIS methods can be classified into three categories: Rule-
based methods, translation-based methods, and LLM-based methods.

The early efforts in NL2VIS are rule-based methods, which utilize
predefined rules to analyze natural language queries and transform them
into a set of predefined visualization templates [7, 13, 28, 34, 39, 42, 44,
65]. Articulate [44] is one of the pioneering works, which utilizes a
parser to tag each word and then classify the whole query into different
analysis tasks. A suitable chart is then generated based on the analysis

tasks and the data to be visualized. Later efforts focus on improving
performance in handling ambiguity in natural language input. For
example, NL4DV [34] simultaneously considers syntactic and semantic
similarity to identify data attributes referenced in the query. While these
methods provided an initial framework for NL2VIS, they were often
constrained in their ability to handle complex or unforeseen queries and
required substantial manual effort in defining the rules and templates.

With the advancement of machine learning translation, translation-
based methods are proposed to solve NL2VIS by treating it as a
translation problem between human languages and visualization lan-
guages [26,29,30]. Specifically, they often utilize sequence-to-sequence
models (e.g. , recurrent neural network or transformer) to encode the
natural language query into a hidden representation and then decode
it into a visualization specification. A representative work in this cate-
gory is ncNet [30], which is a Transformer-based model incorporating
visualization-aware optimizations to enhance the translation process
and the quality of the generated visualizations. To better address the in-
sufficient accuracy of from-scratch generation methods, RGVisNet [41]
leverages a hybrid retrieval-generation method to enhance results by
retrieving the most relevant queries from existing data. While these
methods offer greater flexibility and the ability to learn visualization-
specific knowledge, they sometimes still struggle in understanding
complex and ambiguous natural language queries.

The recent surge in the capabilities of LLMs has led to their
widespread adoption in NL2VIS. To comprehensively assess the capa-
bilities and limitations of LLMs, researchers have conducted extensive
evaluation [3, 16, 19, 35, 37, 47]. For example, Vazquez et al. [47] con-
ducted systematic experiments analyzing LLM performance in NL2VIS
across different aspects, including chart generation, library adaptation,
and visual variable configuration. Chen et al. [3] constructed VisEval,
a comprehensive NL2VIS benchmark that evaluates multiple LLMs to
identify common challenges and provide insights for future research
directions. Beyond evaluation, researchers have also explored methods
to better harness the strong language understanding and generation abil-
ities of LLMs through techniques like in-context learning [6, 18, 23,32]
and supervised fine-tuning [36, 46, 61]. For example, LLM4VIS [17]
employs a few-shot approach to guide the model in recommending
appropriate visualization types for the test data, while Prompt4VIS [23]
retrieves similar questions and the groundtruth answers as input to en-
hance model performance. To further help models make correct reason-
ing, recent work like ChartGPT [46] and V-RECS [36] decompose the
visualization generation process into a series of sub-tasks that the LLM
addresses sequentially. In contrast to existing approaches, our method
provides a detailed reasoning process for each step, which not only
effectively boosts model performance but also enhances transparency.

2.3 Visualization for Human-LLM Collaboration

Visualization has been proven to be an effective way to help users
harness the power of LLMs and achieve different tasks [24, 48, 50, 62,
63,66]. Based on the purpose of the visualization, existing work can be
classified into two categories: visualizations for enhancing LLM inputs
and visualizations for enhancing LLM outputs.

A significant body of work has explored how visualization aids users
in crafting effective prompts and achieving better performance. For
example, Strobelt et al. [43] proposed PromptIDE, a tool designed to as-
sist users in constructing prompts for text classification tasks. It allows
users to construct multiple prompt variations, compare their perfor-
mance, and iteratively refine them based on quantitative feedback. For
complicated tasks that require complex prompts to unlock the potential
of LLMs, PromptChainer [56] and AI Chains [57] help users decom-
pose complicated into smaller, more manageable sub-tasks, thereby
simplifying the creation of prompts. In the domain of text-to-image
generation, PromptMagician [12] supports users to efficiently explore
and compare the prompts and corresponding generated images retrieved
from a database. This visual exploration offers valuable guidance and
hints for refining user prompts. PromptCharm [52] focuses on itera-
tively improving generated images through multimodal prompting by al-
lowing users to adjust the attention given to specific keywords within the
prompt. PromptMap [1] introduces an intuitive spatial interface for im-



age generation, allowing users to manipulate prompts via interactive 2D
layouts (e.g. , grids or graphs) instead of text. For multimodal reasoning
tasks, POEM [15] visualizes interaction patterns across modalities at
different granularities. This multi-level model understanding empowers
users to refine prompts in a more interpretable and controllable manner.

Another prominent area of research focuses on facilitating human-
LLM collaboration by enabling users to understand and steer the output
of LLMs. For example, InsightLens [54] provides a structured and ac-
cessible way for users to record, organize, and revisit these insights, en-
hancing the overall efficiency and value of LLM-powered data analysis
workflows. Patchview [10] uses a tangible visual metaphor that enables
writers to intuitively guide the LLM in generating story world elements,
fostering a more natural and expressive co-creation experience. Tale-
Brush [9] employs line-sketching interactions along with a GPT-based
language model to support writers in dictating character fortune plots in
line with the creative goals of the writers. The most relevant one is Wait-
GPT [60], which facilitates programmers to understand and verify the
code generated by LLMs for data analysis tasks. It transforms the LLM-
generated code into an interactive node-link diagram that updates in real
time, visually representing data operations and their intermediate states.
Users can efficiently monitor the analysis process, understand the logic
behind the generated code, and even modify specific operations di-
rectly within the visual interface. Our work aligns with the second
category, focusing on making the reasoning steps of LLMs more trans-
parent and controllable. However, unlike WaitGPT, which transforms
generated code into code in a post-analysis manner, we first design a
comprehensive CoT reasoning process tailored for NL2VIS, providing
a step-by-step explanation of how natural language descriptions are
translated into finalized visualizations. This structured process not only
boosts performance in NL2VIS but also provides better transparency.

3 DESIGN OF THE COT PROCESS FOR NL2VIS
The key to incorporating the CoT process into the NL2VIS pipeline
lies in understanding how analysts design appropriate visualizations to
fulfill their analysis intent. To develop a CoT process that effectively
captures visualization design reasoning, we conducted a comprehensive
literature review and expert interviews, resulting in a structured five-
stage CoT process that is suitable for NL2VIS tasks.

3.1 Literature Review and Expert Interviews
We began by conducting a comprehensive review of existing literature,
focusing on frameworks that describe the systematic progression from
analysis intent to visualizations [33, 51, 55] and NL2VIS [40, 46]. The
nested model proposed by Munzner [33] was particularly influential,
which emphasizes progression from domain problem characterization to
data abstraction and visual encoding. In addition, prior research [46] has
demonstrated decoupling the NL2VIS task from aspects such as data
transformation and visualization notably boosts visualization accuracy.
To complement our theoretical analysis, we conducted semi-structured
interviews with four visualization experts (E1-E4) to understand their
real-world visualization authoring workflows. E1 is a senior researcher
with 8-year experience in data visualization; E2 is a data analyst famil-
iar with multiple visualization tools; E3 and E4 are Ph.D. students with
4 and 3 years visualization experience, respectively. None of them are
co-authors of this work. Using a think-aloud protocol, experts verbal-
ized their thought processes while designing appropriate visualizations.
Each interview lasted between 40 and 55 minutes.

3.2 Initial Three-Stage Process
Based on our literature review and expert interviews, we initially iden-
tified three key stages in the visualization authoring process:
Understand analysis intent and determine chart type. In this initial
stage, analysts first understand the visualization goal and select an
appropriate chart type. As E1 stated, “I will first quickly examine a few
exemplar data and understand the visualization goal, then I can choose
the most suitable visualization type to fulfill my analysis need.” E4 fur-
ther elaborated, “Even if the exact data processing is not immediately
clear, I usually start by determining the chart type and identifying the
primary axes. It will provide a clear picture of what the visualization

might reveal.” These insights align with findings from Wang et al. [51],
which noted that analysts preferred a top-down method, starting with de-
termining the chart type and then specifying other configuration details.
Prepare data for visualization. After determining the chart type, all
experts agreed they would start processing raw data to suit the specific
requirements of that chart. As E3 explained, “Once I know I am cre-
ating a bar chart to compare categories, I need to make sure my data
is aggregated correctly, since there is no point showing individual data
points and only the summary statistics matter.” This data processing
stage usually involves filtering the data to focus on relevant subsets,
aggregating data to summarize key trends or patterns, and transforming
the data by calculating new fields. This acts as a crucial bridge between
the raw data and the visual representation, ensuring that the data is struc-
tured and formatted in a way that is suitable for the selected chart type.
Convert prepared data into visual elements. Following data prepara-
tion, the final stage involves mapping the data into visual channels ap-
propriate to the selected chart type, such as the height of bars or the area
of shapes. E2 described this process as “assigning the right variables
to the right visual properties, such as putting the independent variable
on the x-axis and the dependent on the y-axis.” E4 also noted that he
would usually make some adjustments after examining the results, such
as removing bars with very low values to reduce the number of bars. In
short, this stage aims to effectively and accurately visualize the prepared
data and clearly communicate the intended message to the audience.

3.3 Refined to Five-Stage CoT Process for NL2VIS

After summarizing these three stages, we presented them to our experts
for validation and collected their feedback. While they generally agreed
with this pipeline, they pointed out that they could be further refined
for the NL2VIS task, especially in data preparation. E3 stated, “When
analyzing trends over time, I usually experiment with different temporal
granularities, like daily, monthly, or yearly. This does not change the
underlying data I visualize but only changes the granularity of analysis.”
E2 elaborated, “This is essentially the binning operation, which is
commonly used in exploratory data analysis and affects how patterns
emerge from the data.” Furthermore, E4 suggested splitting the data
preparation into three steps: identifying relevant data, determining
proper analysis granularity, and implementing necessary modifications
to enhance visualization effectiveness. He provided an example: “When
visualizing average income across different countries, we first extract
data on income and nationality, then calculate the average income per
country, and finally select and sort the countries and display the top 10
or 20 countries for visualization. Once these three steps are completed,
the data is properly prepared for effective visualization.”

Based on these feedback, we refined the CoT process structure to a
five-stage process:

S1 Determine chart type: Select the most appropriate visualization
method based on the data and analysis intent.

S2 Retrieve relevant data: Identify and extract the specific data at-
tributes required for the visualization.

S3 Define data granularity: Establish the appropriate granularity for
the data visualization.

S4 Refine data for visualization: Apply transformations such as filter-
ing and sorting to prepare the final data for optimal visualization.

S5 Generate visualization: Configure and generate the final visual-
ization to effectively communicate the intended insights.

3.4 Validation of the Five-Stage Process

To validate our refined five-stage process, we conducted a follow-up
evaluation with the same group of experts. We presented them with five
diverse analysis tasks and asked them to describe their visualization
design process using our framework. The experts successfully applied
the five-stage process to all scenarios, confirming its completeness
and flexibility. E4 noted, “This structure is comprehensive yet simple
enough to apply across different types of visualization tasks. It captures
the key decision points without being overly prescriptive.” E2 added,
“What I particularly like about this framework is that it explicitly de-
tails decisions often implicitly made by experienced visualizers, which



Fig. 2: The pipeline of DeepVIS Framework

could benefit novice training and automation.” The validation con-
firmed that our five-stage CoT process effectively captures the essential
reasoning steps in visualization design while remaining adaptable to
diverse analytical scenarios.

4 CONSTRUCTION OF NVBENCH-COT

Even with the identified CoT process, we still need sufficient training
data to guide models in learning the reasoning steps for NL2VIS. How-
ever, it would be prohibitively expensive to manually create the whole
reasoning process, which requires an immense amount of time and
expert effort. To tackle this issue, we develop an automatic pipeline
that augments existing NL2VIS datasets with structured CoT reasoning
steps. Unlike the few-shot prompting approach [58], our pipeline signif-
icantly enhances the model’s capability to reason about chart-specific
patterns and SQL-syntax patterns. Fig. 2 shows our detailed pipeline,
which consists of two modules: the database description module and
the reasoning steps generation module.

For clarity, we demonstrate our pipeline using nvBench [29], a
widely used NL2VIS dataset, but our pipeline can be easily adapted
to other NL2VIS datasets. In nvBench, each training sample contains
a table (e.g. , Faculty), a natural language query (e.g. , “Compute
the total number of rank across rank as a pie chart”), and the corre-
sponding Visualization expressed in Visualization Query Language
(VQL) (e.g. , VISUALIZE Pie SELECT Rank, COUNT(Rank) FROM
Faculty GROUP BY Rank). This VQL can be executed, transformed
to Vega-lite specifications, and rendered to obtain the visualizations.

4.1 Database Description Module

The database description module aims to enhance input to provide
essential details for subsequent reasoning steps. Our expert interviews
revealed that analysts typically scan multiple table rows at the beginning
to gain a foundational understanding of data. Our experiments also con-
firmed that adding comprehensive database descriptions significantly
improves reasoning accuracy and reduces errors (Sec. 6.1.2). To mirror
this common practice of examining several table rows, we implemented
a template-based augmentation method with two key subcomponents:
Schema description. Given a table, we generate a comprehensible
schema that captures essential elements, including table names, column
names, and their data types. For instance, when processing the faculty
table, our method formats columns using the conventional column
name:value type pattern, producing entries such as facid:number,
fname:text, and rank:text.
Value sampling. In addition to the schema description, it is also neces-
sary to examine sample values for accurate reasoning. For instance, a
rank:text column might contain either full names like Associate
Professor or abbreviation like AssocProf. Without concrete exam-
ples, it is impossible to determine whether WHERE rank=Associate

Professor or WHERE rank=AssocProf is the correct filtering con-
dition. Therefore, we incorporate representative value samples in the
input. To ensure inclusion of relevant samples, we use GPT-4o-mini to
process both the natural language query and database schema to identify
relevant columns and incorporate appropriate samples accordingly.

4.2 Reasoning Steps Generation Module
After generating comprehensive database descriptions, our reasoning
steps generation module creates structured CoT reasoning steps that
systematically guide models through the visualization creation process.
Following our identified five-stage CoT process, we decomposed the vi-
sualization reasoning into five key steps. We leveraged GPT-4o-mini to
complete the reasoning steps using the ground truth VQL and carefully
crafted prompts, with full details provided in the supplemental material.
We selected GPT-4o-mini due to its strong reasoning capabilities and
cost-effectiveness for large-scale data generation.
Determine chart type (S1). This initial step analyzes the VISUALIZE
clause in the VQL output (e.g. , bar, line, pie) to select the most appro-
priate chart type based on the user analysis intent and database schema.
Models are required to justify why the chosen chart type effectively
communicates the requested insights and fulfills the analysis intent.
Retrieve relevant data (S2). This step carefully identifies the necessary
tables, columns, and conditions for the visualization. By reasoning
through the FROM, SELECT, and WHERE clauses, only relevant data is
extracted for further processing, aligning with the query. In a similar
way, models are required to justify each decision they make.
Define data granularity (S3). In this step, models are required to deter-
mine how to group and aggregate data, using GROUP BY for categorical
or numerical grouping and BIN BY for time-based data. It explains the
grouping strategy to ensure the visualization accurately reflects trends
or summaries in the data.
Refine data for visualization (S4). This step focuses on sort-
ing and limiting operations, which correspond to ORDER BY, SORT
DIRECTION, and LIMIT clauses in VQL. Models are required to ex-
plain why this refinement is needed and how they enhance readability
or align with the analysis intent.
Generate visualization (S5). The final step synthesizes all previous
reasoning results and generates the complete VQL. This step ensures
all components work harmoniously to produce a visualization that ac-
curately addresses user needs while maintaining technical correctness.

After building these reasoning steps, we conducted tuning and val-
idation experiments on the Llama3.1-8B-Instruct model and found
that sometimes the model will still generate illegal results, such as
HISTOGRAM in the VISUALIZE field and unsupported functions like
WEEKDAY(Date) in the BIN BY field. Such issues can be addressed by
providing explicit constraints in the input prompt. These constraints
include limiting visualization types to BAR, PIE, LINE, and SCATTER
and restricting column selections to those in the database schema or
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valid derivations (e.g. , COUNT, AVG, MAX, MIN). Our ablation studies
demonstrate that incorporating these constraints as text prompts in our
training samples significantly improves model reasoning capabilities
and VQL generation accuracy.

4.3 nvBench-CoT
Before automatically augmenting nvBench using the database
description module and the reasoning steps generation module, we
conducted a rule-based filtering and removed 41 problematic samples,
including duplicated queries (9), illegal VQLs (26), and empty VQLs
(6). Furthermore, we leveraged GPT-4o-mini to identify 1,351 samples
exhibiting inconsistency between queries and VQLs. For example,
consider the query “What are the dates of the assessment notes, and
count them by a bar chart.” The groundtruth VQL is Visualize
BAR SELECT date_of_notes, COUNT(date_of_notes) FROM
Assessment_Notes BIN date_of_notes BY WEEKDAY, which
contains an erroneous BIN BY clause that makes it inconsistent with
the original query intent. After removing these problematic samples,
we conducted a comprehensive quality assurance process by randomly
sampling 15% of the augmented data and manually evaluating the
appropriateness of the generated reasoning steps. Detailed statistics of
the nvBench-CoT are presented in supplemental material.

5 DEEPVIS
In addition to our dataset and pipeline, we also developed DeepVIS,
a visual analysis tool that exposes detailed reasoning processes while
enabling rich interactive exploration. This tool bridges the gap between
NL queries and visualization outputs by making the underlying CoT
reasoning accessible and modifiable.

5.1 Visualization Design
Fig. 3 presents the interface of DeepVIS. The core component is the
CoT view (Fig. 3A), which provides a structured overview of the
model’s reasoning process from natural language queries to final vi-
sualization results. The detailed reasoning steps are organized as a
hierarchical tree following our five-stage CoT process. The root node
corresponds to S5, which synthesizes the previous reasoning steps and
produces the final VQL result. Placing this stage as the root allows
users to quickly grasp the output before exploring the underlying rea-
soning process. Four second-level nodes correspond to the four stages
(S1-S4) in our CoT Process, each displaying the key decisions made
by the model at that stage. Their child nodes reveal more detailed
reasoning steps, such as GROUP_BY, and BIN_BY fields inferences in
S3. To facilitate understanding without overwhelming the user with

details, a concise summary of the reasoning is included in each node.
To optimize space usage while maintaining context, we implemented
a space-tree layout with dynamic expansion controls. This adheres to
the “details-on-demand” principle, allowing users to selectively expand
nodes of interest while collapsing others. This hierarchical visualiza-
tion aligns with the top-down analysis workflow users naturally adopt,
enabling them to efficiently navigate from high-level visualization to
specific implementation details while maintaining contextual awareness
throughout the exploration process.

In addition to the CoT view, we provided three supporting views
to complement the CoT view during the analysis. The information
view (Fig. 3B) provides comprehensive reasoning text for the selected
step, which allows users to examine the detailed thought process. The
chart view (Fig. 3C) renders the final visualization based on the model-
generated VQL. Users can also export the Vega-Lite specification or
the SVG file once they confirm their satisfaction with the results. For
detailed data exploration, the table view (Fig. 3D) provides a structured
presentation of the underlying dataset, enabling users to verify how raw
data translates into visual elements throughout the reasoning steps.

5.2 Interactions
Coordinated exploration. We implemented coordinated view updates
to maintain analysis context throughout the exploration process. When
users select a node within the CoT view, the information view instantly
displays the comprehensive reasoning text associated with that step,
and the table view shows the retrieved or transformed data after the
selected steps. These coordinated interactions create a cohesive analysis
environment that maintains contextual continuity while navigating the
complex reasoning chain.
Interactive refinement. Beyond passive exploration, our interface
allows users to actively refine the reasoning process when they identify
potential errors or suboptimal decisions. We offer two complementary
refinement mechanisms:

• Self correction: This feature prompts the model to automatically
reconsider its decisions within the selected reasoning step. By
leveraging hints about potential errors in the flagged step, the
model can improve results without direct user input.

• Manual correction: This allows users to provide specific prefer-
ences that steer the regeneration process toward desired results,
combining human domain expertise with model capabilities.

The corresponding prompts are provided in the supplemental material.
After making corrections, our tool will intelligently regenerate all

subsequent steps to ensure logical consistency throughout the reasoning
process. To help users understand the effects of their modifications,



we implement an intuitive comparison feature that clearly identifies
differences between original and revised reasoning paths. As shown in
Fig. 3A, when a self-correction is applied to the SORT DIRECTION step
(Fig. 3A4), unchanged nodes appear visually dimmed (e.g. , Fig. 3A5),
while modified nodes are highlighted with affected fields marked in
red for immediate identification (Figs. 3A1-A4). The newly gener-
ated reasoning step is appended under the node for SORT DIRECTION
(Fig. 3A6), allowing users to directly compare the before-and-after
reasoning processes and select the more appropriate one.

By making the CoT reasoning both transparent and interactive, our
method transforms users from passive consumers of automated visual-
izations into active collaborators in the design process. This improves
both the usability of DeepVIS and the quality of resulting visualizations,
ultimately leading to more effective data exploration and analysis.

6 EVALUATION

6.1 Quantitative Evaluation

6.1.1 Comparison with Baseline Methods

Baseline methods. We chose seven representative NL2VIS methods
with different architectures for comparison.

• Seq2Vis [29]: This method treats the NL2VIS problem as a ma-
chine translation problem between natural language and visual-
ization specifications. We included it because it is the pioneering
work and establishes the foundational baseline.

• Transformer: This is a milestone model and has been widely
adopted for various NLP tasks. We included it to evaluate how a
general-purpose NLP model performs on the NL2VIS task.

• ncNet [30]: This is the state-of-the-art model for NL2VIS
based on the Transformer architecture, which introduces several
visualization-aware optimizations to better understand user intent
and generate specification-compliant outputs. We included it to
establish the current performance ceiling for specialized models.

• RGVisNet [41]: This is an innovative hybrid retrieval-generation
method that first retrieves the most relevant query candidates as
prototypes from the VQL codebase and then revises them to pro-
duce the desired VQL. We included it to compare with different
paradigms in NL2VIS and provide insights into whether our CoT
methodology outperforms retrieval-augmented strategies.

• Llama3.1-8B-SFT: This baseline employs the identical backbone
architecture as our model, yet it adopts end-to-end data without
CoT reasoning steps for supervised fine-tuning. We included it to
directly validate the effectiveness of our CoT module.

• General Purpose LLMs: We evaluate against seven state-of-the-
art general purpose LLMs representing diverse architectures and
capabilities: Llama3.1-8B (an open-source small-scale model),
GPT-4o-mini (which also serves as the source for CoT reasoning
steps generation in our method), GPT-o1 and GPT-o3 (OpenAI’s
latest reasoning models), Gemini-2.5-Pro (Google’s flagship mul-
timodal model), Claude-3.5-Sonnet (Anthropic’s advanced rea-
soning model), and DeepSeek-R1 (an open-source reasoning
model). We included them because they represent how general
users perform NL2VIS using state-of-the-art LLMs.

• ChartGPT [61]: This is the most comparable work that also
breaks down the chart generation task into multiple steps: column
selection, data filtering, data aggregation, chart type determi-
nation, and data visualization. We included it to highlight the
effectiveness of our specific reasoning chain design.

Experiment settings. We adopted the split of the train/dev/test data
set following Song et al. [41], which achieves a strict separation of
databases and ensures that no individual database appears across mul-
tiple sets. This prevents potential data leakage and maintains the in-
tegrity of the evaluation. We selected Llama3.1-8B-Instruct as our
base model due to its stable performance [14], open-source accessibil-
ity, and widespread adoption in recent research [49, 67]. The detailed
hyperparameter settings are provided in the supplemental material.
Metrics. To comprehensively evaluate model performance, we com-
pared the generated VQL with the groundtruth from multiple aspects.
Following RGVisNet [41], we measure accuracy in chart type (Chart

Table 1: Performance Comparison.

Method Chart Acc Axis Acc SQL Acc Data Acc All Acc

Seq2Vis 93.18% 22.71% 0.80% 0.84% 0.62%
Transformer 97.79% 62.24% 18.59% 18.73% 17.93%
ncNet 98.05% 46.40% 42.59% 43.07% 42.28%
RGVisNet 97.21% 48.34% 53.61% 53.96% 51.70%
Llama3.1-8B 81.27% 68.75% 42.98% 51.62% 46.48%
Llama3.1-8B-SFT 83.83% 77.05% 52.10% 62.52% 59.37%
GPT-4o-mini 91.31% 87.16% 52.35% 75.07% 70.37%
GPT-o1 91.39% 93.36% 59.76% 77.62% 71.63%
GPT-o3 92.70% 91.95% 59.39% 76.02% 71.14%
Gemini-2.5-Pro 92.03% 93.32% 46.57% 75.25% 69.81%
Claude-3.7-Sonnet 92.47% 93.98% 59.72% 77.64% 71.80%
DeepSeek-R1 92.25% 94.36% 51.75% 77.34% 72.60%
ChartGPT 97.34% 94.85% 69.21% 73.84% 73.03%
NL2VIS-CoT 97.52% 95.17% 74.63% 80.74% 77.16%

Acc), x/y axes configuration (Axis Acc), and SQL syntax (SQL Acc),
which are the three major components of VQL. However, syntactically
different SQL queries can produce identical results, such as the con-
ditions WHERE YEAR IN (1999, 2000) and WHERE YEAR = 1999
OR YEAR = 2000. Therefore, we introduce two additional metrics:
Data Acc, which measures whether execution results match regardless
of SQL syntax, and All Acc, which indicates when chart type, axes, and
data all match correctly. These execution-based metrics complement
the syntax-based metrics for a more comprehensive assessment.
Results analysis. Table 1 summarizes the results of our proposed
NL2VIS-CoT method and the baseline methods on the test set. Tradi-
tional models like Seq2Vis and Transformer exhibit high Chart Acc but
struggle with SQL Acc and Data Acc. This stems from their inability
to effectively handle the hierarchical complex dependencies between
natural language semantics and database schema parsing, which is crit-
ical for NL2VIS tasks. In contrast, advanced specialized models like
ncNet and RGVisNet address this through sophisticated design choices,
making them better interpret natural language queries and transform
data accurately. Specifically, RGVisNet performs better than ncNet
(51.70% vs. 42.28% All Acc), which can be attributed to its hybrid
retrieval-generation framework that better utilizes existing VQL proto-
types to reduce errors during visualization synthesis. For LLM-based
methods, Llama3.1-8B with few-shot prompting achieves 46.48% in
All Acc without any training, and Llama3.1-8B-SFT achieves higher
performance (59.37%) after supervised fine-tuning. However, the per-
formance is still constrained by model scale limitations. Large-scale
LLMs with few-shot prompting demonstrate better performance, and
the results are consistent across different models: around 92% in Chart
Acc, 93% in Axis Acc, 77% in Data Acc, and 71% in All Acc. However,
they lag behind the traditional methods in terms of Chart Acc, revealing
a critical limitation of few-shot learning: limited exemplars hinder
effective generalization for different cases and may even generate in-
valid VQLs, such as VISUALIZE HISTOGRAM. Compared with previous
LLM-based methods, ChartGPT and our method achieve higher Chart
Acc and All Acc, highlighting the great potential of fine-tuning small-
scale LLMs with CoT reasoning steps. Notably, our NL2VIS-CoT
achieves a leading All Acc of 77.16% while simultaneously performing
best in Axis Acc, SQL Acc, and Data Acc.

In addition to the numerical comparison, we also provide several
examples to demonstrate why NL2VIS-CoT performs better than the
baseline methods in Fig. 4. Here we select ncNet and GPT-4o-mini as
two representative methods for comparison, while the full results are
provided in the supplemental material.

6.1.2 Ablation Study
In addition to the benchmark evaluation, we carry out ablation experi-
ments to validate the effectiveness of our constructed nvBench-CoT and
the significance of each component. We consider four ablation methods:

• w/o value sampling: We removed the column value sampling
mechanism from the database description module to evaluate how
this mechanism affect model performance.
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Fig. 4: Comparative analysis of VQLs and generated charts between our method and baseline methods.

• w/o constraints: We removed the explicit constraints in the input
prompt to understand how these constraints contribute to the
model’s behavior.

• w/o CoT: We removed the CoT reasoning process to analyze its
role and importance in NL2VIS.

• ChartGPT-pipeline: ChartGPT also decomposes the generation
of VQL into multiple steps but uses a different order from us. To
evaluate the comparative effectiveness of reasoning step orders,
we reconstructed our dataset using ChartGPT’s proposed order
and trained a model under identical experimental settings.

Results analysis. Table 2 shows the results of the ablation study. When
the value sampling mechanism was eliminated, Data Acc substantially
dropped from 80.74% to 72.11%, with All Acc dropping from 77.16%
to 69.31%. This is mainly because the model fails to generate correct
SQL queries to retrieve relevant data, particularly in the WHERE clause.
For example, the model incorrectly generates WHERE rank="Asstant
Professor" instead of the correct one WHERE rank="AsstProf",
resulting in a query that fails to retrieve any data. The removal of
constraints produced a different pattern of performance degradation.
While SQL Acc and Data Acc show relatively modest declines com-
pared to removing value sampling, Chart Acc and Axis Acc exhibit
more significant drops. This emphasizes the importance of constraints
in generating reasonable results. In one example, the model incor-
rectly uses a function WEEKDAY() instead of the standardized BIN BY
syntax, resulting in an illegal VQL. When removing the detailed CoT
reasoning steps, all the metrics significantly drop, indicating the critical
importance of the reasoning process in our method. Compared with
the ChartGPT-pipeline, our method also achieves better performance
across all metrics, empirically validating the effectiveness of our order.

Table 2: Ablation Study Results.

Method Chart Acc Axis Acc SQL Acc Data Acc All Acc

w/o value sampling 94.99% 88.95% 67.85% 72.11% 69.31%
w/o constraints 94.16% 87.03% 71.81% 78.23% 75.39%
w/o CoT 70.30% 65.79% 48.30% 51.88% 49.31%
ChartGPT pipeline 95.60% 93.08% 71.10% 77.32% 73.54%

NL2VIS-CoT 97.52% 95.17% 74.63% 80.74% 77.16%

6.1.3 Error Analysis
To better understand the limitations of our method and identify ar-
eas for improvement, we conducted a comprehensive error analysis
across our four-step reasoning. Our analysis reveals that S1 (deter-
mine chart) had fewer errors (56), while S2 (retrieve data), S3 (define

granularity), and S4 (refine data) exhibited much more errors (183,
202, and 253 samples, respectively). Notably, these included 131 ag-
gregation function errors in S2, 191 GROUP BY errors in S3, and 220
ORDER BY errors in S4. For example, when processing the query “Can
you draw the trend of maximal score over the year? rank by the x-
axis in descending,” our method generates VISUALIZE LINE SELECT
YEAR, MAX(SCORE) FROM WINE ORDER BY YEAR DESC. While the
system correctly identified the aggregation function MAX(SCORE) and
the sorting requirement, it failed to include the essential GROUP BY
YEAR clause necessary for proper aggregation. This demonstrates that
while our model effectively handles common queries, there remains
room for improvement in complex queries involving data aggregation
and transformation logic.

Next, we focused our analysis on S1 due to its foundational role in
the reasoning pipeline and its cascading impact on subsequent steps.
Our findings reveal significant variations in error rates across different
chart types: BAR (1.18%), PIE (2.97%), SCATTER (7.63%), and LINE
(9.83%). Notably, despite pie charts representing only 7.84% of the
dataset, they maintain a relatively low error rate, suggesting that chart
frequency does not directly correlate with prediction accuracy. To
better understand the high error rates in line charts and scatter plots, we
conducted a deeper investigation into these errors and found that over
95% of them occur in multi-solution scenarios, i.e. , multiple chart types
can effectively address the same question. For example, when asked
“How many documents correspond with each project id,” the ground
truth specifies a scatter plot, yet our model’s bar chart response equally
solves the problem. This pattern exposes a limitation in the current
dataset evaluation framework, which fails to account for multiple valid
solutions corresponding to a single natural language query.

6.2 Use Cases
We present two use cases to demonstrate how our interactive interface
enhances user understanding of the reasoning process and enables
targeted adjustments.

6.2.1 Case 1: Using Self Correction to Refine Results.
This use case illustrates how users can explore reasoning steps and
guide the model to reconsider critical decisions, leading to enhanced
visualization outcomes.

Alice analyzes the allergy database, which contains a table student
with columns such as stuid, name, city_code, and age. She aims
to examine student distribution across cities and identify the city with
the most students. Therefore, she inputs “Please display a bar chart
showing all cities and their corresponding number of students to identify
the city with the highest student count.” Fig. 3C’ displays the generated
chart, which successfully uses a bar chart to visualize student numbers
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by city. Alice verifies the reasoning process and confirms it is sound.
For example, Fig. 3B’ shows that the model appropriately justifies the
chart type selection: “A bar chart (BAR) is a perfect fit as it allows
for a clear comparison of the student counts across different cities.”
However, while the chart enables identification of the city with the
most students, Alice prefers to sort the data to make the pattern more
evident. The model initially overlooked sorting because it reasoned:
“Since the question doesn’t demand result sorting, we omit the ORDER
BY clause” (Fig. 3A6). To address this issue, Alice activates the “Self
correct” feature to prompt the model to reconsider this decision. Upon
reconsideration, the model now acknowledges that “Sorting the data
in descending order based on student count will place the city with the
maximum number of students at the top, making it straightforward to
visually determine which city has the highest student count” (Fig. 3B),
and the node for reasoning SORT DIRECTION also updates accordingly
(Fig. 3A4). Fig. 3C shows the improved visualization with sorted bars,
which Alice finds satisfactory.

6.2.2 Case 2: Use Manual Correction to Refine Results.

This use case illustrates how users can explore reasoning steps and
make target refinements to their query.

Bob is tasked with analyzing a university database to explore the age
distribution of students across different majors. The database includes
a student table with key columns such as stuid, age, sex, major,
advisor, and city_code, alongside other tables like faculty and
department. To begin his analysis, he inputs the query: “Analyze the
age distribution of students in different majors” into DeepVIS. Deep-
VIS responds by generating a scatter plot with individual data points
for each student’s major and age (Fig. 5C’). He finds this scatter plot
difficult to interpret and compare the age distribution across different
majors. Therefore, he decides to examine the reasoning process to see
why DeepVIS select scatter plot. After clicking the node for reasoning
the chart type, he finds that DeepVIS thinks a scatter plot effectively
displays the relationship between two variables—major and age, reveal-
ing patterns like age concentrations within specific majors (Fig. 5A4).
He then realizes that his query may not be so accurate and may mislead
the model. Therefore, he refines his requirement to “Show the average
age of each major” and clicks “Manual correction.” After applying
this correction, DeepVIS changes the chart type from SCATTER to BAR,
selection from‘age to AVG(age), and adds GROUP_BY major to ag-
gregate the data by major. The resulting bar chart displays each major
as a distinct bar, with the height of each bar representing the average
age of students in that major (Fig. 5C). This new visualization proves

far clearer than the initial scatter plot, enabling Bob to easily compare
the central tendency of ages across different majors. Reflecting on the
process, Bob realizes that his original query “Analyze the age distribu-
tion” lacks specificity. However, the reasoning steps help him realize it
and successfully guide the tool to produce a more suitable output. He
also appreciates that DeepVIS automatically adjusted related fields to
align with his corrected request, sparing him the effort of modifying
each field manually.

6.3 User Study
We conducted a user study to evaluate whether presenting reasoning
steps in DeepVIS facilitates users in understanding model behavior and
generating better visualization.
Participants. We recruited 32 participants (P1-P32, 16 males and 16
females) for the experiment, 20 are from the local university and 12
are from the workforce. including 20 from the local university and 12
industry professionals, 20–51 years old (M=25.78, SD=7.39). They
are from diverse majors, including Computer Science (8), Software
Engineering (5), Finance (5), Mathematical Statistics (3), Digital Media
Design (2), Journalism (2), Civil Engineering (3), Biomedical Engineer-
ing (2) and Geographic Information Science (2). All participants have
experience using data visualization tools, such as Excel, Matplotlib,
ECharts, and Vega-Lite. In addition, 25 of them have tried using LLMs
to assist in data visualization.
Study procedure. We began the user study by introducing NL2VIS
tasks using representative nvBench examples. Then, participants were
introduced to four interfaces: ncNet (using the developers’ Jupyter
notebook), DeepSeek and ChartGPT (using chatbot interfaces integrat-
ing the backend models), and our DeepVIS. Following familiarization,
participants completed 10 randomly sampled nvBench examples across
all interfaces, with the order counterbalanced to mitigate learning and
fatigue effects. Upon task completion, participants responded to a
five-point Likert-scale questionnaire to evaluate the effectiveness and
usability of the interfaces. Finally, we conducted a brief interview with
participants to collect detailed feedback and analyzed the interview
data using thematic analysis [2], where the first author did the initial
coding and revised it with an external second coder.
Result analysis. Fig. 6 shows the rating across six perspectives: in-
sights communication, intent reflection, logic comprehension, error
identification, refinement efficiency, and workload saving. The detailed
questions are provided in the supplemental material. Overall, Deep-
VIS has consistently received a relatively high proportion of “Strongly
Agree” and “Agree” ratings across all six dimensions, which provides
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Fig. 6: User study results: DeepVIS has consistently received relatively higher ratings across all six dimensions.

compelling evidence of its effectiveness in enhancing user understand-
ing and facilitating interactive refinement. P7 commented positively
regarding the reasoning steps generated by the DeepVIS: “These rea-
soning steps sound reasonable and justify the choice made by models,
making the visualization decisions transparent and understandable.”
Other participants also agreed that the detailed reasoning steps helped
them “identify the errors in reasoning more easily”, (P2) “allow for
quicker iteration” (P8), and “provide useful hints to refine the input
query” (P11). Such feedback highlights the benefits of disclosing the
reasoning steps in the analysis. With respect to overall workload re-
duction, the participants consistently acknowledged the effectiveness
of DeepVIS. Many expressed sentiments similar to those of P4, who
remarked: “It alleviates the tasks of creating visualization by automati-
cally handling data transformation and visual encoding.” P1 further
added: “I would like to use this tool in the future for my data analysis
projects,” demonstrating the practical usability of DeepVIS.

In comparative evaluations against other baseline methods, DeepVIS
exhibited better performance across all perspectives. A particularly
notable distinction emerged in refinement efficiency, where our method
received only 9% negative rating, substantially lower than ncNet (50%),
DeepSeek (38%), and ChartGPT (47%). This performance advantage
stems from our transparent interface design, which exposes interme-
diate reasoning steps and enables targeted interactive refinement. In
contrast, other interfaces require users to restart the entire process
when modifications are needed. For example, P2 commented on nc-
Net: “While this package is very easy to use, it only generates the final
visualization, and I sometimes need to try different queries to obtain
a satisfactory result, which can be time-consuming and frustrating.”
Regarding the workload saving, P17 pointed out that she needs to “pro-
vide more detailed instructions to steer ncNet and DeepSeek compared
to DeepVIS.” This highlights the advantage of DeepVIS in reducing the
cognitive burden on users while producing high-quality visualizations
that accurately reflect their analysis intent.

7 DISCUSSION AND FUTURE WORK

Based on the interview with our experts and the participants in the user
study, we discuss several promising directions for future work.
Integrating visualization feedback. While our CoT process has shown
promising results, it currently lacks direct integration of the final visual-
ization or its underlying data into the reasoning process. This limitation
can result in suboptimal visualizations, especially when multiple alter-
natives could meet user demands. For example, while both bar charts
and scatter plots can reveal relationships between variables, the opti-
mal choice depends on data characteristics. Scatter plots work better
with fewer data points, while bar charts are preferable when presenting
aggregated values.. To address this limitation, we suggest integrating
feedback from the final visualization into the creation process by adapt-
ing our CoT pipeline. We propose two key strategies to achieve this:
First, we could explore leveraging multi-modal large language models
to analyze generated visualizations and provide actionable insights,
such as detecting visual clutter or recommending alternative chart types.
Second, tools like VizLinter [5] can automatically pinpoint common
visualization flaws. These flaws can be described in natural language
and integrated into the reasoning process, allowing models to suggest
fixes or apply corrections automatically.
Enhancing fine-grained control. Currently, we translate the natu-
ral language queries into VQLs, which are then converted into Vega-

Lite specifications for rendering. This design choice abstracts away
rendering-specific details, enabling cross-tool compatibility with vi-
sualization frameworks such as Vega-Lite, ECharts, and matplotlib.
However, this also limits fine-grained control on the chart, such as
setting color scales, adjusting layout tuning, and changing mark size.
This issue can be addressed by further advancing our CoT framework.
On the one hand, we can analyze existing visualization tools, summa-
rize common specifications, and incorporate additional fields, such as
COLOR_BY for color encoding and Mark_Size controlling mark dimen-
sions. This enhancement would allow users to specify detailed aesthetic
preferences while preserving the benefits of cross-tool compatibility.
On the other hand, we can explore datasets that map natural language
queries directly to Vega-Lite specifications, which supports more di-
verse chart types and allows more detailed configurations. The dataset
can be constructed in a similar way, i.e. , prompting the LLMs to gener-
ate detailed, step-by-step reasoning traces that connect analysis intent
to ground truth specifications. The generated reasoning steps can guide
models in learning how to achieve analysis intent using Vega-Lite.

Extending the CoT framework to broader tasks. By incorporating
CoT reasoning into the NL2VIS pipeline, we have demonstrated how
structured reasoning steps can improve both model performance and
transparency in NL2VIS. Our method is highly flexible and can be
readily adapted to more complex NL2VIS datasets. For example, a
preprint dataset nvBench2.0 [26] extends nvBench by providing multi-
ple valid VQLs for identical queries. On the one hand, our method can
directly generate intermediate reasoning steps for this dataset without
modification due to their similar data format. On the other hand, users
can make targeted modifications to the prompts in our reasoning steps
generation module, which instructs models to produce multiple valid
outputs at each reasoning step and generate diverse VQLs. Further-
more, we would like to highlight that by augmenting existing datasets
with reasoning steps, models are able to solve a complex task beyond
NL2VIS. For example, in data storytelling, it can help explain the
reasoning behind the visual choices so that the model learns how to
better connect the stories to visuals. In visualization debugging tasks,
the reasoning process provides rich contextual insights into why certain
visualizations may fail, allowing models to refine design choices more
effectively. Future work can explore how this framework facilitates
various visualization tasks and achieves better human-AI collaboration.

8 CONCLUSION

To tackle the challenges that existing NL2VIS methods suffer from a
lack of transparency and are challenging to refine due to their black-box
designs, we propose the integration of the CoT process into the NL2VIS
pipeline. Our work delivers three key contributions: 1) designing a
comprehensive CoT reasoning process for NL2VIS, 2) introducing the
nvBench-CoT dataset with detailed reasoning steps to achieve state-of-
the-art performance, and 3) developing an interactive visual interface
that lets users inspect and tweak the reasoning behind visualizations.
Quantitative benchmark evaluation and qualitative case studies demon-
strate that our method outperforms traditional methods, with users
appreciating the inherent transparency that fosters trust and expertise.
Furthermore, our method suggests the broader potential of CoT rea-
soning to enhance model performance and foster effective human-AI
collaboration across diverse visualization tasks.



SUPPLEMENTAL MATERIALS

All the supplemental materials are available at the website
https://github.com/Bvivib-shuai/DeepVIS, including: 1) a PDF file
including the prompts for the reasoning steps generation module, ex-
emplar natural language queries, VQLs, and visualizations generated
by baseline methods and our methods, and the questionnaire for the
user study, 2) a video demonstrating the interface and the two use
cases, 3) the nvBench-CoT dataset, 4) the code for training data and
deploying DeepVIS, 5) the prompt of interactive refinement, and 6)
implementation details.
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