
Supplemental Material for DeepVIS: Bridging Natural Language and
Data Visualization Through Step-wise Reasoning

1 THE CONSTRUCTION OF NVBENCH-COT
1.1 Prompts for Generating CoT Steps
Below is the prompt we used to generating detailed CoT steps based
on the ground truth VQL.

Please simulate a complete reasoning process to explain the

Pre-entered Correct VQL, based on the provided Question

and Database Schema below. Pretend that you are analyzing

the Pre-entered Correct VQL for the first time and detail

why each part of it is structured as such.

Question:

{question}

Database Schema:

{db_schema}

Pre-entered Correct VQL:

[VQL]

{additional_constraints}

Now, please reason according to the following strict format

:

Step 1:

Reasoning for Chart Type: [Explain why the chart type in

the Pre-entered Correct VQL is chosen based on the question

and the database schema]

Chart Type: [Fill in the chart type from the Pre-entered

Correct VQL here]

Step 2:

Reasoning for FROM: [Explain why the tables in the FROM

clause of the Pre-entered Correct VQL are chosen based on

the question and the database schema]

FROM: [Table names for the FROM clause from the Pre-entered

Correct VQL]

Reasoning for SELECT: [Explain why the columns in the

SELECT clause of the Pre-entered Correct VQL are chosen

based on the question and the database schema]

SELECT: [Columns for the SELECT clause from the Pre-entered

Correct VQL]

Reasoning for WHERE : [Explain why the conditions in the

WHERE clause of the Pre-entered Correct VQL are set based

on the question and the database schema]

WHERE: [Conditions for the WHERE clause from the Pre-

entered Correct VQL]

Step 3:

Reasoning for GROUP BY: [Explain why the columns in the

GROUP BY clause of the Pre-entered Correct VQL are used for

grouping based on the question and the database schema]

GROUP BY: [Columns for the GROUP BY clause from the Pre-

entered Correct VQL]

Reasoning for BIN: [If applicable , explain why the

BIN_COLUMN and BIN_TIME_UNIT in the Pre-entered Correct VQL

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

are used based on the time - related grouping requirements

and the database schema]

BIN: [BIN_COLUMN from the Pre-entered Correct VQL]

BY: [BIN_TIME_UNIT from the Pre-entered Correct VQL]

Step 4:

Reasoning for ORDER BY: [Explain why the columns in the

ORDER BY clause of the Pre-entered Correct VQL are used for

sorting based on the question and the database schema]

ORDER BY: [Columns for the ORDER BY clause from the Pre-

entered Correct VQL]

Reasoning for SORT DIRECTION: [Based on the analysis of the

question requirements and the database schema, explain why

the ASC or DESC (or empty) in the Pre-entered Correct VQL

is used for each column in the ORDER BY clause]

SORT DIRECTION: [ASC|DESC|empty from the Pre-entered

Correct VQL]

Reasoning for LIMIT: [Explain why the LIMIT clause (if

present) in the Pre-entered Correct VQL is set as such

based on various factors]

LIMIT: [Number of rows for the LIMIT clause from the Pre-

entered Correct VQL]

Step 5:

Final VQL: Combine the above content with the VQL template

to obtain the final VQL result.

1.2 Constraints Used in the Reasoning Process

Below are the explicit constraints we include in the input prompt to
guide the model to generate legal outputs.

During the reasoning process, you need to follow these

constraints:

The VQL template is as follows:

Visualize [TYPE] SELECT [COLUMNS] FROM [TABLES] [WHERE] [

GROUP BY] [ORDER BY] [SORT DIRECTION] [LIMIT] BIN [

BIN_COLUMN] BY [BIN_TIME_UNIT]

The constraints for each part are as follows:

1. VISUALIZE field: Only BAR, PIE, LINE, and SCATTER are

allowed as values. It is used to specify the data

visualization chart type of the query results. Analyze the

nature of the question and the database schema to explain

why the [TYPE] in the Pre-entered Correct VQL is chosen.

2. SELECT field: There must be exactly two columns from the

database in the SELECT clause. These columns must be

either directly from the columns listed in the Database

Schema or valid derivations based on those columns (COUNT,

AVG, MAX and MIN). Explain why the [COLUMNS] in the Pre-

entered Correct VQL are selected considering the question

and the database schema.

3. FROM field: Only add the table names that must be used

to complete the natural - language query. Evaluate the

question and the database schema to explain why the [TABLES

] in the Pre-entered Correct VQL are necessary to answer

the question. Describe the connection between these tables

and the data required by the question.

4. WHERE field: Analyze the natural - language query and

the database schema to determine whether there is a

filtering requirement. When there are clear limiting

conditions , accurately explain why the WHERE clause logic

expressions in the Pre-entered Correct VQL are formed this

way, considering the conditional logical relationships to

match the query intent. The columns used in the conditions

must be from the Database Schema or valid derivations.

5. Grouping:

If you need to group or aggregate the time column in the

SELECT clause by a time unit (day, weekday, month, or year)

and the current table does not have a column that meets

this time - unit requirement , then use the BIN [BIN_COLUMN]

BY [BIN_TIME_UNIT] part. [BIN_COLUMN] should be a time

column from the Database Schema, and [BIN_TIME_UNIT] should

be the appropriate time unit (day, weekday, month, or year

).

When the dataset needs to be grouped and it is not related

to time, add other columns in the GROUP BY clause as

grouping bases in sequence, with earlier - used grouping

bases placed more forward. The columns in the GROUP BY

clause must be from the Database Schema or valid

derivations. Explain why the GROUP BY and BIN (if

applicable) parts in the Pre-entered Correct VQL are set up

based on the question and the database schema.

6. LIMIT field: Add a LIMIT clause at the end of the VQL to

specify the maximum number of rows to return. If there is

no limit requirement , leave it empty. Explain why the LIMIT

clause (if present) in the Pre-entered Correct VQL is

included or not, considering factors such as the amount of

data needed to answer the question and performance

implications.

1.3 Some Exemplary Samples from nvBench-CoT
Below are three exemplary samples from the nvBenct-CoT. The
full dataset is available at https://anonymous.4open.science/
r/DeepVIS-9C33.

1.3.1 Example 1
QUESTION

What are the different budget type codes, and how many documents are
there for each? Order Budget_Type_Code in descending order.

DATABASE SCHEMA

• Table ref_document_types:

– document_type_code: text

– document_type_name: text

– document_type_description: text

• Table ref_budget_codes:

– budget_type_code: text

– budget_type_description: text

• Table projects:

– project_id: number

– project_details: text

• Table documents:

– document_id: number

– document_type_code: text

– project_id: number

– document_date: time

– document_name: text

– document_description: text

– other_details: text

• Table statements:

– statement_id: number

– statement_details: text

• Table documents_with_expenses:

– document_id: number

– budget_type_code: text

– document_details: text

• Table accounts:

– account_id: number

– statement_id: number

– account_details: text

STEP 1: REASONING FOR CHART TYPE

Reasoning for Chart Type: The user is interested in comparing dif-
ferent budget type codes alongside their respective document counts,
which suggests that a bar chart would be suitable to visualize significant
differences among categories. Bar charts are effective in displaying
and comparing discrete categories due to their clarity in representing
numerical values associated with each category label. In this instance,
a bar chart will help to easily identify which budget types have more
documents and how they compare with each other.
Chart Type: BAR

STEP 2: REASONING FOR FROM
Reasoning for FROM: To answer the question regarding budget type
codes and the number of documents associated with each, the table
documents_with_expenses is necessary as it contains links between
documents and budget type codes. This table directly correlates budget
types to document entries, which is essential for counting the number
of documents per budget type. Other tables, like ref_budget_codes,
could provide additional descriptions if needed, but the primary focus
is on directly obtaining the counts from documents_with_expenses.
FROM: documents_with_expenses
Reasoning for SELECT: The columns selected in the query are
Budget_Type_Code and COUNT(BUDGET_TYPE_CODE). The first col-
umn, Budget_Type_Code, is directly related to the budget types listed
in the database schema, while the second column uses the aggregation
function COUNT to tally the number of documents that correspond to
each budget type code. This aligns perfectly with the question, which
requires both the distinct budget types and the count of documents for
those types.
SELECT: Budget_Type_Code, COUNT(BUDGET_TYPE_CODE)
Reasoning for WHERE: The natural language query does not specify
any filtering conditions such as specific budget types or time frames
for documents. Since the requirement is to group and count based on
distinct budget type codes, and there are no restrictions present in the
conditions of the question, the WHERE clause is left empty.
WHERE: [empty]

STEP 3: REASONING FOR GROUP BY
Reasoning for GROUP BY: The GROUP BY clause includes
budget_type_code because we need to aggregate the document
counts for each distinct budget type. Grouping by this column al-
lows the query to summarize the data in the manner requested by the
question—specifically, counting the number of documents for each
budget type code.
GROUP BY: budget_type_code
Reasoning for BIN: In this scenario, there is no need for time-based
grouping since the question is focused solely on budget types and
document counts, without any mention of time periods. Therefore, the
BIN section is not applicable here.
BIN: [empty]
BY: [empty]

STEP 4: REASONING FOR ORDER BY
Reasoning for ORDER BY: The ORDER BY clause is used to sort
the results based on the Budget_Type_Code. This aligns with the
requirement to display the results in descending order for the budget
type codes, allowing for easier analysis of the types in the specified
order.

https://anonymous.4open.science/r/DeepVIS-9C33
https://anonymous.4open.science/r/DeepVIS-9C33

ORDER BY: Budget_Type_Code
Reasoning for SORT DIRECTION: The question explicitly requests
that the budget type codes be ordered in descending order. This im-
plies that there is a need to see the budget types starting from the
highest value down to the lowest, which guides us to use DESC as the
appropriate sort direction.
SORT DIRECTION: DESC
Reasoning for LIMIT: There is no specified limit to the number of
results required for this query. Since the question encompasses all
distinct budget types and their document counts, it is reasonable to
return all results without imposing a limit. Moreover, performance
considerations are less critical here since the result set may be finite
and manageable without extra constraints.
LIMIT: [empty]

STEP 5: FINAL VQL
Final VQL: Visualize BAR SELECT Budget_Type_Code,
COUNT(Budget_Type_Code) FROM documents_with_expenses
GROUP BY budget_type_code ORDER BY Budget_Type_Code
DESC

1.3.2 Example 2
QUESTION

Show sum transaction amount from each transaction type , could you
order total number of transaction amount in desc order ?

DATABASE SCHEMA

• Table customers:

– customer_id: number

– customer_first_name: text

– customer_middle_initial: text

– customer_last_name: text

– gender: text

– email_address: text

– login_name: text

– login_password: text

– phone_number: text

– town_city: text

– state_county_province: text

– country: text

• Table orders:

– order_id: number

– customer_id: number

– date_order_placed: time

– order_details: text

• Table invoices:

– invoice_number: number

– order_id: number

– invoice_date: time

• Table accounts:

– account_id: number

– customer_id: number

– date_account_opened: time

– account_name: text

– other_account_details: text

• Table product_categories:

– production_type_code: text

– product_type_description: text

– vat_rating: number

• Table products:

– product_id: number

– parent_product_id: number

– production_type_code: text

– unit_price: number

– product_name: text

– product_color: text

– product_size: text

• Table financial_transactions:

– transaction_id: number

– account_id: number

– invoice_number: number

– transaction_type: text

– transaction_date: time

– transaction_amount: number

– transaction_comment: text

– other_transaction_details: text

• Table order_items:

– order_item_id: number

– order_id: number

– product_id: number

– product_quantity: text

– other_order_item_details: text

• Table invoice_line_items:

– order_item_id: number

– invoice_number: number

– product_id: number

– product_title: text

– product_quantity: text

– product_price: number

– derived_product_cost: number

– derived_vat_payable: number

– derived_total_cost: number

STEP 1: REASONING FOR CHART TYPE

Reasoning for Chart Type: The question requires displaying a sum-
mary statistic (sum of transaction amounts) grouped by transaction type.
Given that the objective is to represent these aggregated values visually
to compare different transaction types, a bar chart is appropriate. A bar
chart effectively represents relationships between categories and their
respective values, allowing for easy comparison of the total transaction
amounts across different transaction types.
Chart Type: BAR

STEP 2: REASONING FOR FROM
Reasoning for FROM: The main focus of the query is on transac-
tion types and their amounts, which are located in the financial_-
transactions table. This table contains the relevant details about
each transaction, such as transaction amounts and types, which are
necessary to address the question. No other tables are required to
supplement this information as all needed data points can be sourced
directly from the financial_transactions table.
FROM: financial_transactions

Reasoning for SELECT: The SELECT clause in-
cludes transaction_type and the aggregated function
SUM(transaction_amount). transaction_type is included
to categorize the sum of transaction amounts. The aggregation function
SUM(transaction_amount) directly corresponds to the request
for the total amounts per transaction type, fulfilling the requirement
outlined in the question.
SELECT: transaction_type , SUM(transaction_amount)
Reasoning for WHERE: The question does not specify any filtering
criteria for transactions, nor does it imply that any conditions should be
applied to the results based on the provided database schema. Therefore,
there are no conditions needed in the WHERE clause, as all transac-
tion types and their sums need to be included in the output without
restriction.
WHERE: [empty]

STEP 3: REASONING FOR GROUP BY
Reasoning for GROUP BY: The GROUP BY clause is necessary to
aggregate the transaction amounts by each transaction_type. This
part is critical because without grouping, we would not be able to see
the total transaction amount per type. The structure directly addresses
the requirement to summarize the data based on the distinct transaction
types present in the financial_transactions table.
GROUP BY: transaction_type
Reasoning for BIN: The query does not require time-based grouping
or aggregation, as it purely focuses on summing transaction amounts
by type. Since there is no time element involved in this analysis, we do
not need to use a BIN clause at all.
BIN: [empty]
BY: [empty]

STEP 4: REASONING FOR ORDER BY
Reasoning for ORDER BY: In the ORDER BY clause, we utilize
SUM(transaction_amount) to sort the results. This aligns with the
question’s request to order the total number of transaction amounts in
descending order, allowing us to see which transaction types have the
highest total amounts first.
ORDER BY: SUM(transaction_amount)
Reasoning for SORT DIRECTION: The requirement specified order-
ing in descending order, which is why DESC is used. This ensures that
the transaction type with the highest summed amount appears at the
top of the results, directly reflecting the question’s intent.
SORT DIRECTION: DESC
Reasoning for LIMIT: There is no limit specified in the question,
meaning we want to see all transaction types and their corresponding
summed amounts. Therefore, no LIMIT clause is included in the query,
as it would restrict the data unnecessarily and contradict the question’s
requirement to show the total amounts from each transaction type.
LIMIT: [empty]

STEP 5: FINAL VQL
Final VQL: Visualize BAR SELECT transaction_type ,
SUM(transaction_amount) FROM financial_transactions GROUP BY
transaction_type ORDER BY SUM(transaction_amount) DESC

1.3.3 Example 3
QUESTION

A bar chart showing the average weight for each gender , I want to sort
total number from high to low order .

DATABASE SCHEMA

• Table candidate:

– candidate_id: number

– people_id: number

– poll_source: text

– date: text

– support_rate: number

– consider_rate: number

– oppose_rate: number

– unsure_rate: number

• Table people:

– people_id: number

– sex: text

– name: text

– date_of_birth: text

– height: number

– weight: number

STEP 1: REASONING FOR CHART TYPE

Reasoning for Chart Type: The question specifies a need for a bar
chart to display the average weight for each gender. Bar charts are
well-suited for comparing categorical data, as they allow for easy vi-
sual interpretation of differences between categories. In this case, the
categories are male and female corresponding to the sex column in the
database schema. Hence, the chart type chosen aligns perfectly with
the objective to visualize this comparison.
Chart Type: BAR

STEP 2: REASONING FOR FROM
Reasoning for FROM: The tables mentioned in the FROM clause need
to contain the necessary data to fulfill the query. Here, the question
focuses on average weight segmented by gender, which directly relates
to the people table. This table contains the relevant columns (sex
and weight) that are required to calculate the average weight based on
gender. The candidate table is not relevant for the analysis requested
about average weights and demographics.
FROM: people
Reasoning for SELECT: The SELECT clause must include columns
that are pertinent to the analysis outlined in the question. The sex
column identifies the gender categories, and the weight column is
needed to compute the average weight for those categories. Therefore,
these two columns are appropriately selected from the people table to
provide the data required.
SELECT: Sex, AVG(WEIGHT)
Reasoning for WHERE: The question does not impose any specific
filtering conditions; it simply requires an average based on gender.
Since there are no restrictions or filters articulated in the question that
would necessitate a WHERE clause, it is appropriate to exclude it in
this context.
WHERE: [empty]

STEP 3: REASONING FOR GROUP BY
Reasoning for GROUP BY: The aim is to aggregate the average weight
data by gender, so the sex column in the GROUP BY clause serves to
group the results correctly. Since we are calculating the average weight
per gender and there’s no need for further grouping (time aggregation
is irrelevant in this context), only the sex column is sufficient.
GROUP BY: sex
Reasoning for BIN: In this case, a BIN clause is not applicable since
there is no time-related grouping needed—our aggregation is purely
based on gender categories. Thus, there’s no requirement for time bins
in the analysis.
BIN: [empty]
BY: [empty]

STEP 4: REASONING FOR ORDER BY
Reasoning for ORDER BY: The question specifies that the results
should be sorted based on the total average weight. Thus, it is logical
to order by the AVG(WEIGHT), ensuring that the categories (genders)
are aligned in decreasing order of their average weights for optimal
visual analysis.

ORDER BY: AVG(WEIGHT)
Reasoning for SORT DIRECTION: The sorting direction DESC is
chosen since the question explicitly requests to sort the total number
of weights from high to low. This allows readers to quickly identify
which gender has the larger average weight.
SORT DIRECTION: DESC
Reasoning for LIMIT: The question does not specify a limit on the
number of rows to return, as it is likely interested in displaying both
genders rather than limiting the output. Consequently, it is appropriate
to leave the LIMIT clause out, indicating that all relevant data for both
genders should be included in the results.
LIMIT: [empty]

STEP 5: FINAL VQL
Final VQL: Visualize BAR SELECT Sex , avg(weight) FROM people
GROUP BY sex ORDER BY avg(weight) DESC

1.4 Prompt of the Inconsistency Check in Data Filtering
Below is the prompt we used to identifying 1,351 samples exhibiting
inconsistency between queries and VQLs.

Determine whether the aggregation requirements in the

Question align with the Aggregation Operations , and provide

a detailed reasoning process.

Aggregation Operations:

GROUP BY:

{GROUP_BY_fields}

BIN BY:

BIN {BIN_BY_field} BY {BIN_TIME_UNIT}

Question:

{Question}

1.5 Detailed Statistics of nvBench-CoT

Table 1: Statistics of the nvBench-CoT Dataset

Chart Type Number of Samples Avg. Question Length Avg. CoT Length

BAR 11254 (78.25%) 25 566
PIE 1127 (7.84%) 16 552
SCATTER 1098 (7.63%) 18 557
LINE 904 (6.28%) 27 582

2 THE FEW-SHOT PROMPT OF GENERAL PURPOSE LLMS

Given the Question and Database Schema, generate VQL based

on the following example.

Input:

Question: [Question]

Database Schema: [Database Schema]

Example:

Question:

Visualize a bar chart showing the average age of captains

in each class.

Database Schema

Table captain: [captain_id: number; name: text; ship_id:

number; age: text; class: text; rank: text]

Table ship: [ship_id: number; name: text; type: text;

built_year: number; class: text; flag: text]

Output:

Step 1:

Reasoning for Chart Type: The question asks to visualize

the average age of captains according to their class. A bar

chart is appropriate in this case because it allows for

easy comparison of the average ages across different

classes. Bar charts are particularly effective when

comparing discrete categories , such as different classes of

ships, which aligns well with the data structure provided.

Chart Type: BAR

Step 2:

Reasoning for FROM: The question specifically requires data

regarding captains, which is inherently stored in the "

captain" table. Since the average age is being calculated

and categorized by class, the "ship" table is unnecessary.

FROM: captain

Reasoning for SELECT: The selected columns "Class" and "AVG

(AGE)" directly match the query. "Class" allows grouping ,

and "AVG(AGE)" performs the required aggregation.

SELECT: Class, AVG(AGE)

Reasoning for WHERE: No specific filtering conditions are

mentioned in the question.

WHERE: (empty)

Step 3:

Reasoning for GROUP BY: Required to compute the average age

per class.

GROUP BY: CLASS

Reasoning for BIN: No temporal grouping is mentioned.

BIN: (empty)

BY: (empty)

Step 4:

Reasoning for ORDER BY: No sorting requirement mentioned.

ORDER BY: (empty)

Reasoning for SORT DIRECTION: No ORDER BY clause present.

SORT DIRECTION: (empty)

Reasoning for LIMIT: No limit requirement present.

LIMIT: (empty)

Step 5:

Final VQL: Visualize BAR SELECT Class, AVG(age) FROM

captain GROUP BY CLASS

3 THE PROMPT OF INTERACTIVE REFINEMENT

3.1 The Self-Correction Prompt

Please correct the Initial Answer based on the Question and

Database Schema. Note that the Self-correction Nodes

Result identifies specific errors in the Initial Answer

that need to be addressed. During the correction process,

ensure that all related VQL components are updated

consistently when making changes.

Question:

{Question}

Database Schema:

{Database Schema}

Initial Answer:

{Initial Answer}

Self-correction Nodes Result:

{Self-correction nodes result}

3.2 The Manual Correction Prompt

Please correct the Initial Answer based on the Question and

Database Schema.

Note that the Manual-correction Nodes Result identifies

specific errors in the Initial Answer that need to be

addressed incorporating the User Feedback. During the

correction process, ensure that all related VQL components

are updated consistently when making changes.

Question:

{Question}

Database Schema:

{Database Schema}

Initial Answer:

{Initial Answer}

Manual-correction Nodes Result:

{Manual-correction nodes result}

User Feedback:

{User Feedback}

4 IMPLEMENTATION DETAILS

4.1 Base Model Architecture

Our experiments were conducted using the Llama-3.1-8B-Instruct
model, which is characterized by a Transformer-based architecture
comprising 32 layers. Each layer in this model includes self-attention
mechanisms and feed-forward networks, which are pivotal for pro-
cessing sequential data and capturing long-range dependencies. The
model’s total parameter count stands at 8 billion, allowing it to learn
complex patterns and generate coherent text based on given instruc-
tions.

4.2 Hyperparameters

The hyperparameters for fine-tuning the llama-3.1-8B-Instruct model
are listed in Table 2.

Table 2: Hyperparameters
Parameter Value

Learning rate 4e-5
Learning Rate Scheduler cosine

Batch size 4
Gradient Accumulation Steps 8

Number of epochs 4
Optimizer adamw_hf

4.3 Training Budget and Hardware Footprint

Training was conducted over 18.6 hours using a dataset of 11,260 sam-
ples. The hardware configuration for training consisted of an NVIDIA
RTX 4090 GPU, which is equipped with 24 GB of graphics memory,
ensuring efficient handling of the model’s parameters and the dataset.

5 VISUALIZATIONS GENERATED BY BASELINE METHODS AND
OUR METHODS.

5.1 Example 1

Question: Draw a chart showing the ten majors with the highest num-
bers of students whose city of residence is known, with the counts
tallied for each major.
Generated VQLs:

-- Seq2Vis:

VISUALIZE BAR SELECT MAJOR, COUNT(*) FROM STUDENT GROUP BY

MAJOR

-- Transformer:

VISUALIZE BAR SELECT MAJOR, COUNT(STUID) FROM STUDENT WHERE

CITY_CODE IS NOT NULL GROUP BY MAJOR ORDER BY COUNT(STUID)

DESC

-- ncNet:

VISUALIZE BAR SELECT MAJOR, COUNT(*) FROM STUDENT WHERE

CITY_CODE IS NOT NULL GROUP BY MAJOR ORDER BY MAJOR DESC

LIMIT 10

-- RGVisNet:

VISUALIZE BAR SELECT MAJOR, COUNT(STUID) FROM STUDENT WHERE

CITY_CODE IS NOT NULL GROUP BY MAJOR ORDER BY COUNT(STUID)

ASC LIMIT 10

-- Llama3.1-8B:

VISUALIZE BAR SELECT MAJOR, COUNT(STUID) FROM STUDENT WHERE

CITY_CODE IS NOT NULL GROUP BY MAJOR ORDER BY MAJOR ASC

LIMIT 10

-- Llama3.1-8B-SFT:

VISUALIZE LINE SELECT MAJOR, COUNT(*) FROM STUDENT WHERE

CITY_CODE IS NOT NULL GROUP BY MAJOR ORDER BY COUNT(*) DESC

LIMIT 10

-- GPT-4o-mini:

VISUALIZE BAR SELECT MAJOR, COUNT(STUID) FROM STUDENT WHERE

CITY_CODE IS NOT NULL GROUP BY MAJOR ORDER BY COUNT(STUID)

ASC LIMIT 10

-- GPT-o1:

VISUALIZE BAR SELECT MAJOR, COUNT(STUID) FROM STUDENT GROUP

BY MAJOR ORDER BY COUNT(STUID) DESC LIMIT 10

-- GPT-o3:

VISUALIZE LINE SELECT MAJOR, COUNT(STUID) FROM STUDENT

WHERE CITY_CODE IS NOT NULL GROUP BY MAJOR ORDER BY COUNT(

STUID) DESC LIMIT 10

-- Gemini -2.5-Pro:

VISUALIZE BAR SELECT MAJOR, COUNT(*) FROM STUDENT WHERE

CITY_CODE != ’’ GROUP BY MAJOR ORDER BY COUNT(*) DESC LIMIT

10

-- Claude -3.7-Sonnet:

VISUALIZE BAR SELECT MAJOR, COUNT(STUID) FROM STUDENT WHERE

CITY_CODE IS NOT NULL GROUP BY MAJOR ORDER BY COUNT(STUID)

LIMIT 10

-- DeepSeek -R1:

VISUALIZE LINE SELECT MAJOR, COUNT(STUID) FROM STUDENT

WHERE CITY_CODE IS NOT NULL GROUP BY MAJOR ORDER BY COUNT(

STUID) DESC LIMIT 10

-- ChartGPT:

VISUALIZE BAR SELECT MAJOR, COUNT(STUID) FROM STUDENT WHERE

CITY_CODE IS NOT NULL GROUP BY MAJOR

-- NL2VIS-CoT:

VISUALIZE BAR SELECT MAJOR, COUNT(STUID) FROM STUDENT WHERE

CITY_CODE IS NOT NULL GROUP BY MAJOR ORDER BY COUNT(STUID)

DESC LIMIT 10

5.2 Example 2

Question: Create a visual chart displaying the five most popular courses
among students who have a recorded phone number, along with the
number of students enrolled in each course, with the requirement that
only courses with more than 100 students be shown in the chart.
Generated VQLs:

-- Seq2Vis:

VISUALIZE BAR SELECT COURSE_ID , COUNT(*) FROM

InterestCourses GROUP BY COURSE_ID

-- Transformer:

VISUALIZE BAR SELECT COURSE_ID , COUNT(*) FROM

InterestCourses WHERE PHONE_NUMBER IS NOT NULL GROUP BY

COURSE_ID ORDER BY COURSE_ID LIMIT 5

-- ncNet:

VISUALIZE BAR SELECT COURSE_ID , COUNT(*) FROM

InterestCourses WHERE PHONE_NUMBER IS NOT NULL GROUP BY

COURSE_ID ORDER BY COUNT(STUID) DESC LIMIT 5

-- RGVisNet:

VISUALIZE BAR SELECT COURSE_ID , COUNT(*) AS STUDENT_COUNT

FROM InterestCourses WHERE PHONE_NUMBER IS NOT NULL GROUP

BY COURSE_ID ORDER BY STUDENT_COUNT DESC

-- Llama3.1-8B:

VISUALIZE LINE SELECT COURSE_ID , COUNT(STUID) FROM

InterestCourses GROUP BY COURSE_ID ORDER BY COUNT(STUID)

DESC LIMIT 5

-- Llama3.1-8B-SFT:

VISUALIZE BAR SELECT COURSE_ID , COUNT(STUID) FROM

InterestCourses GROUP BY COURSE_ID ORDER BY COUNT(STUID)

DESC LIMIT 5

-- GPT-4o-mini:

VISUALIZE BAR SELECT COURSE_ID , COUNT(STUID) FROM

InterestCourses WHERE PHONE_NUMBER != ’’ GROUP BY COURSE_ID

ORDER BY COUNT(STUID) DESC LIMIT 5

-- GPT-o1:

VISUALIZE TABLE SELECT COURSE_ID , COUNT(STUID) FROM

InterestCourses WHERE PHONE_NUMBER IS NOT NULL GROUP BY

COURSE_ID ORDER BY COUNT(STUID) DESC LIMIT 5

-- GPT-o3:

VISUALIZE BAR SELECT COURSE_ID , COUNT(STUID) FROM

InterestCourses WHERE PHONE_NUMBER IS NOT NULL GROUP BY

COURSE_ID HAVING COUNT(STUID) > 100 ORDER BY COUNT(STUID)

LIMIT 5

-- Gemini -2.5-Pro:

VISUALIZE BAR SELECT COURSE_ID , COUNT(STUID) FROM

InterestCourses WHERE PHONE_NUMBER PHONE != ’’ GROUP BY

COURSE_ID HAVING COUNT(STUID) > 100 ORDER BY COUNT(STUID)

DESC LIMIT 5

-- Claude -3.7-Sonnet:

VISUALIZE BAR SELECT COURSE_ID , COUNT(STUID) FROM

InterestCourses WHERE PHONE_NUMBER PHONE != ’’ GROUP BY

COURSE_ID HAVING COUNT(STUID) > 100 ORDER BY COUNT(STUID)

DESC LIMIT 5

-- DeepSeek -R1:

VISUALIZE BAR SELECT COURSE_ID , COUNT(*) FROM

InterestCourses WHERE PHONE_NUMBER IS NOT NULL GROUP BY

COURSE_ID HAVING COUNT(*) > 100 ORDER BY COUNT(STUID) DESC

LIMIT 5

-- ChartGPT:

VISUALIZE BAR SELECT COURSE_ID , COUNT(STUID) FROM

InterestCourses GROUP BY COURSE_ID ORDER BY COUNT(STUID)

DESC

-- NL2VIS-CoT:

VISUALIZE BAR SELECT COURSE_ID , COUNT(STUID) FROM

InterestCourses WHERE PHONE_NUMBER IS NOT NULL GROUP BY

COURSE_ID HAVING COUNT(STUID) > 100 ORDER BY COUNT(STUID)

DESC LIMIT 5

