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Diagnosing Ensemble Few-Shot Classifiers
Weikai Yang, Xi Ye, Xingxing Zhang, Lanxi Xiao, Jiazhi Xia, Zhongyuan Wang, Jun Zhu, Hanspeter Pfister, and Shixia Liu
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Fig. 1. FSLDiagnotor: (a) learner view compares base learners (rows) with the ensemble model, including the overall difference
(circles in the first column) and detailed difference (stacked bars in the other columns); (b) sample view visualizes the shots and
unlabeled samples in context. The image content and label distributions of the samples of interest are displayed below.

Abstract—The base learners and labeled samples (shots) in an ensemble few-shot classifier greatly affect the model performance. When
the performance is not satisfactory, it is usually difficult to understand the underlying causes and make improvements. To tackle this
issue, we propose a visual analysis method, FSLDiagnotor. Given a set of base learners and a collection of samples with a few shots, we
consider two problems: 1) finding a subset of base learners that well predict the sample collections; and 2) replacing the low-quality shots
with more representative ones to adequately represent the sample collections. We formulate both problems as sparse subset selection
and develop two selection algorithms to recommend appropriate learners and shots, respectively. A matrix visualization and a scatterplot
are combined to explain the recommended learners and shots in context and facilitate users in adjusting them. Based on the adjustment,
the algorithm updates the recommendation results for another round of improvement. Two case studies are conducted to demonstrate
that FSLDiagnotor helps build a few-shot classifier efficiently and increases the accuracy by 12% and 21%, respectively.

Index Terms—Few-shot learning, ensemble model, subset selection, matrix visualization, scatterplot
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1 INTRODUCTION

THE few-shot classification aims to train a classifier to recognize
unseen classes with only a few labeled samples (shots) in

each class, which is of great significance both academically and
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practically [1], [2]. For example, at the early stage of the COVID-
19 epidemic, the massive labeling of the CT scans requires a
long process of clinical observation with the risk to patients’
lives. As such, few-shot classification is a viable choice for these
scenarios. Many advances have been made to continuously improve
the performance of few-shot classifiers by developing a variety
of methods, such as ensemble learning, generative models, and
meta-learning [2]. Because the ensemble few-shot classification
can combine any few-shot classifiers (base learners) for better
performance, it is the most widely used state-of-the-art method
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in practice. For example, three of the top five best-performing
models in a CVPR challenge on few-shot learning [3] and four of
the top five best-performing models in a Kaggle competition on
few-shot learning [4] have used ensemble few-shot classifiers to
boost performance successfully.

Previous studies have shown that the performance of the
ensemble model is largely affected by the diversity and cooperation
among the individual base learners [1] and the representativeness
of the shots [5]. Accordingly, using all learners and shots may
downgrade the performance. For example, if the performance of a
learner is poor and its predictions are different from the majority,
it will hurt the performance of the ensemble model. In addition,
a shot wrongly representing some samples usually leads to the
misclassification of these samples. Thus, it is desirable to select a
subset of cooperative and diverse learners and identify a small set
of representative shots, which is a long-standing challenge for the
practical application of few-shot classification. Existing learning
methods typically apply an ensemble model to all the given learners
and shots [1], [6], which often fail to achieve the best performance.
Improving the performance usually requires repeatedly selecting
the learners and adjusting their weights. Without a comprehensive
understanding of how the model and shots work together to
reach the final predictions, this trial-and-error process is very
time-consuming and expertise-demanding. Moreover, lacking the
refinement of the shots, the performance improvement is limited [7],
[8]. To improve the performance efficiently, users need an efficient
way to analyze the performance-related log data (“analyze first”).
The learners and shots with unusual behavior, such as the learner
causing a large confidence drop or the shot with poor coverage, can
be highlighted (“show the important”). After understanding the
roles of learners/shots in the final predictions, they can then decide
which ones to be added/removed for improving the performance
(“interaction and feedback”). Based on the updated learners
(shots), suitable shots (learners) are recommended for another round
of analysis (“analyze again”). Such an iterative analysis process
with human-in-the-loop fits well with the visual analytics mantra [9]
and inspires us to develop a visual analysis tool, FSLDiagnotor, for
tuning the selection of learners and shots.

The key behind FSLDiagnotor is its ability to efficiently identify
and eliminate performance bottlenecks caused by the selected base
learners and shots. Given a set of learners and a collection of sam-
ples with a few shots, we consider two problems: 1) finding a subset
of diverse and cooperative learners that well predict the sample
collections and 2) removing low-quality shots and recommending
necessary new shots to adequately represent the sample collection.
By studying the intrinsic characteristics of these two problems, we
formulate them as sparse subset selection and develop two selection
algorithms to recommend appropriate learners and shots. However,
the recommendations are not always perfect and may contain
one or a few low-quality learners/shots. For example, a learner
that wrongly predicts some samples with high confidence can be
recommended because it is mistaken as a well-performing learner
for those samples. Such low-quality learners/shots are hard to be
detected and corrected without human involvement. To facilitate
such tasks, a matrix visualization and a scatterplot are combined to
explain the prediction behavior of the recommended learners and
the coverage of the shots in context. Based on the understanding
of the behavior of the learners and shots, users can improve the
selection of learners and enhance the shots for better performance.

We performed a quantitative evaluation to show that both the
learner and shot selection algorithms can boost the performance of

the few-shot classifier. We also conducted two case studies with
two machine learning experts to demonstrate that our tool helps
diagnose and improve the few-shot classifier more efficiently and
increases the accuracy by 12% and 21%, respectively. The demo is
available at http://fsldiagnotor.thuvis.org/.

The main contributions of this work include:
• The formulation of sparse subset selection that unifies the shot

and learner selection into one framework.
• An enhanced matrix visualization coordinated with a scatter-

plot to explain how the base learners and shots contribute to
the final predictions.

• A visual analysis pipeline that tightly integrates the subset
selection algorithm with interactive visualization to facilitate
the iterative improvement of the shots and base learners.

2 RELATED WORK

2.1 Few-Shot Classification
The ensemble methods have been explored in the vein of few-
shot classification to boost the performance [1], [6]. Dvornik et
al. [1] encouraged the diversity and cooperation between learners
for better performance. In addition to training the base learners,
Qi et al. [6] adaptively assigned a weight to each learner for a
strong few-shot classifier. While more and more sophisticated
models have been developed, there is recent work pointing out
the cruciality of high-quality features: using high-quality features
is even more effective than employing a well-designed complex
model [10]. Following such a philosophy, Dvornik et al. [11]
learned high-quality feature extractors to extract high-quality
features for unlabeled samples. Due to the importance of the
diversity-cooperation strategy and the features, our work combines
the two. We leveraged deep learning models, such as a pre-trained
ResNet model [12], to extract the features for each sample. Then a
set of learners were built based on the extracted features. This saves
training time and provides the flexibility to quickly obtain the base
learners. Our method also recommends a subset of base learners and
enhances the quality of shots to further improve the performance.

2.2 Visual Analysis for Improving Model Performance
Existing visual analysis work for improving model performance
can be classified into two categories: model-driven methods and
data-driven methods [13], [14].

Model-driven methods facilitate experts to better understand the
inner workings of a machine learning model and discover the reason
why a training process fails to achieve an acceptable performance.
For example, CNNVis [15] was developed to diagnose the potential
issues of a convolutional neural network (CNN) by examining the
learned features and activation of neurons. Alsallakh et al. [16]
utilized a confusion matrix to disclose the impact of class hierarchy
on the features learned at each CNN layer. Kahng [17] developed
ACTIVIS to facilitate the identification of specific training issues
on an industry-scale deep learning model by illustrating how
neurons are activated by the instances of interest. Later efforts
focus on diagnosing other types of models, such as deep generative
models [18], Deep Q-Networks [19], and sequential models [20],
[21]. In addition to improving a single model, some efforts focus
on analyzing ensemble models [22], [23], [24], [25]. For example,
Schneider et al. [23] developed a visual analysis tool to explore
the data and model spaces of the ensemble model and improve
its performance by enabling a selection of the base learners. Our
method supports the improvement on both the data and model.

http://fsldiagnotor.thuvis.org/
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In the same spirit of data-centric AI [7], [8], data-driven
methods aim to improve the quality of training samples at the
instance and label levels. At the instance level, Chen et al. [26]
developed OoDAnalyzer, a visual analysis tool to analyze the
out-of-distribution samples in the context of the training and test
samples. Yang et al. [27] proposed DriftVis to detect and correct
the distribution changes in a data stream. Ming et al. [28] developed
ProtoSteer to explain the prediction of an input sample by using
exemplary samples that have similar scores to this sample. Model
developers can improve the model performance by revising the
exemplary samples. More recently, Gou et al. [29] proposed to
generate unseen test cases to improve model robustness. At the
label level, Heimerl et al. [30] utilized active learning to facilitate
the task of interactive labeling for document classification. This
idea of employing active learning to support interactive labeling
has also been adopted by other visual analysis work [31], [32],
[33], [34].Most of the later research along this line has focused on
detecting and correcting noisy labels in training samples. Liu et
al. [5] introduced LabelInspect to improve the crowdsourced
annotations by utilizing the mutual reinforcement relationships
between the workers’ behavior and the uncertainty of the annotated
results. Xiang et al. [35] developed a visual analysis tool to correct
label errors in a large set of training samples based on user-selected
trust items. More recently, Jia et al. [36] applied active learning
to zero-shot classification. They interactively built a class attribute
matrix for improving the performance of classifiers.

Although the aforementioned methods have shown the
capability of improving the model performance to some
extent, there are few efforts that tightly combine model-driven
methods with data-driven methods to improve performance. The
combination is particularly needed in few-shot learning since both
the data and model greatly influence the performance. Thus, we
develop FSLDiagnotor to improve both shots and learners.

3 BACKGROUND

Few-shot classification aims to learn a good classifier for unseen
classes with a few shots. Specifically, for the N samples from these
unseen classes, only the labels of M shots (e.g., 1–5 shots per
class) are provided. The shot set is denoted as S = {(x∗j ,y∗j)}M

j=1.
Here, y∗j is the label of shot x∗j . It is represented by a one-hot
vector where the value of the corresponding class index is 1, and
the others are 0s. The goal is to build a model to predict the label
distribution y of a sample x of the unseen classes based on S. The
label distribution y is a C-dimensional probability vector. C is the
number of classes, and the value of the i-th dimension indicates
the probability of the sample belonging to the i-th class.

Ensemble few-shot classification combines a set of base
learners {θk}K

k=1 for achieving better performance. Fig. 2 illustrates
the process of predicting the label distribution of a sample based on
three given shots and two learners. For sample x, each learner θk
generates a label distribution yθk . These label distributions are then
averaged with weight wk to obtain the final label distribution y:

y =
1
K

K

∑
k=1

wkyθk . (1)

wk is set to 1 by default and can be adjusted in our tool. It can
be seen that the prediction results of the ensemble model are
determined by the base learners and shots. Thus users require a
tool to help them examine the quality of base learners and shots
and tune them for better performance.

Shots

Extractors Features
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Base learners

High prediction probability
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Fig. 2. The prediction process of the ensemble few-shot classifier:
(a) each base learner extracts the features of the shots and samples;
(b) label distributions of the samples (yθ1 ,yθ2 ) are calculated based
on the similarity between the features and then averaged with
weights to obtain the final label distribution y.

4 DESIGN OF FSLDIAGNOTOR

4.1 Requirement Analysis

We collaborated with three machine learning experts (E1, E2,
E3) to design FSLDiagnotor. E1 is a postdoc researcher with an
interest in data selection and few-shot learning. E2 and E3 are
two Ph.D. students with a focus on few-shot learning. They are
not the co-authors of this work. The following three requirements
are identified based on existing literature and three 60-minute
participatory design sessions with the experts.

R1: Tuning the selection of learners and their ensemble
weights. Previous work has indicated that the diversity and
cooperation among the base learners are very important for
improving the performance of the ensemble model [1]. The experts
also raised concerns regarding the current trial-and-error process
for tuning the model when the accuracy is not acceptable. They
usually need to repeatedly examine the log data to understand the
diversity and cooperation among learners, and manually adjust
their selection and ensemble weights. This is very time-consuming.
To facilitate the tuning process, the experts expressed the need
to quickly understand the prediction behavior of base learners on
different levels, including the overall difference compared with the
ensemble model and the detailed difference on different classes.

R2: Improving the quality of the shots. The representative-
ness of the shots is essential for few-shot classification [5]. As there
are only a few labeled samples, mislabeled or confusing shots, such
as the overlapped ones between two categories, decrease the model
performance greatly. Removing such low-quality shots and adding
necessary new ones improve the coverage of the shots and overall
performance. When diagnosing an ensemble few-shot classifier,
the experts need to understand the coverage of each shot and find
the samples that are not well covered by the shots. In addition,
the experts required a tool that can automatically recommend low-
quality shots to be removed and candidate samples to be added to
the shot set, so that they can only examine a small subset and then
quickly decide which ones to remove/add.

R3: Being agnostic to the model architectures of learners.
Existing methods for ensemble few-shot classification build the
base learners based on a given model architecture [1], [6]. This
is not flexible as a fixed model architecture cannot satisfy the
performance requirements of different applications. Thus, the
experts need the flexibility to choose an appropriate architecture
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Fig. 3. FSLDiagnotor overview. Given the base learners and samples with a few shots, the sparse subset selection module recommends
base learners and shots for building the ensemble few-shot classifier. The visualization module then explains how the learners and shots
affect the final predictions, which facilitates users to improve them for interactively tuning the model.

for a given task. To directly employ different model architectures,
such as a pre-trained ResNet model [12] or a newly developed
few-shot learning model, the ensemble model should be agnostic
to the model architectures that are used to build the base learners.

4.2 System Overview

Motivated by the requirements, we have developed FSLDiagnotor
to interactively select high-quality base learners and shots. As
shown in Fig. 3, it consists of two modules: sparse subset selection
and visualization. Given a set of base learners, shots, and unla-
beled samples, the sparse subset selection module automatically
recommends a subset of learners and a few shots. With these
recommendations, an ensemble few-shot classifier is built. Next,
the matrix visualization in the visualization module illustrates
the performance of the learners and helps adjust their ensemble
weights adaptively to improve the performance (R1). Users can
also examine the coverage of the shots in the scatterplot and replace
the low-quality shots with the high-quality ones (R2). The two
modules work together to support an iterative tuning process until
the desired performance is achieved. During the process, users can
directly adjust the selection of the base learners without considering
their model architectures (R3). This is achieved by building them
directly on the features extracted by these models. As such, the
ensemble model focuses only on feature-level integration. With
this characteristic, users can directly use pre-trained models and
newly developed few-shot models to extract features. This saves the
training time and facilitates building the ensemble model flexibly.

(a) Input (b) Selection result

Fig. 4. An example of sparse subset selection.

5 SPARSE SUBSET SELECTION

To build a high-quality few-shot classifier, FSLDiagnotor supports
two tasks: 1) selecting a subset of diverse and cooperative base
learners; 2) enhancing the representativeness of shots by replacing
the low-quality ones with the high-quality ones. Because both tasks
aim to find a small representative subset from a large data collection,
we formulate them as distance-based sparse subset selection [37].
In this section, we first give an overview of the subset selection
algorithm, then present how it can be extended to base learner
selection and shot enhancement with task-related distances, and
finally give the time complexity analysis. The quantitative result is
shown in Sec. 7.1.

5.1 Algorithm Overview

Fig. 4 illustrates the basic idea of the algorithm. Given two sets
U = {ui}I

i=1 and V = {v j}J
j=1 (U and V can be identical or

different), the sparse subset selection algorithm aims to find a
subset of U that can well represent set V . This is achieved by
minimizing the following function that balances the representation
quality and the size of the subset:

J

∑
j=1

I

∑
i=1

zi jdi j +α

I

∑
i=1

max
j

zi j

s.t. zi j ∈ {0,1}, ∀i, j;
I

∑
i=1

zi j = 1, ∀ j.

(2)

The first term is the cost of representing V with U (represen-
tation cost), and the second term is the sparsity term to penalize
a large subset. In the first term, zi j is a binary variable indicating
whether v j is represented by ui, di j is the distance between ui and
v j, and the constraint ∑

I
i=1 zi j = 1 guarantees that v j is represented

by only an element in U . In the second term, max j zi j = 1 if ui is
selected in the subset, and ∑

I
i=1 max j zi j is the size of the subset.

α ≥ 0 controls the trade-off between the two terms.
The proposed formulation is NP-hard [38]. To solve it effi-

ciently, we relax the discrete 0-1 integer zi j ∈ {0,1} to zi j ≥ 0 and
convert the sparse subset selection into a continuous optimization
problem. As in Elhamifar et al. [37], we adopt the alternating
direction method of multipliers framework to optimize Eq. (2).
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5.2 Base Learner Selection

Base learner selection aims to find a small subset of diverse
and cooperative base learners to better predict the input samples
(fitness). Here, U refers to the set of base learners {θk}K

k=1,
and V is the set of samples {xi}N

i=1. As sparse subset selection
encourages diversity among the selected learners, we then extend
it by considering fitness and cooperation. Accordingly, Eq. (2) is
rewritten as:
N

∑
i=1

K

∑
k=1

zkidki +α1

K

∑
k=1

λk max
i

zki +α2 ∑
1≤k<l≤K

µkl max
i

zki ·max
i

zli

s.t. zki ≥ 0, ∀k, i;
K

∑
k=1

zki = 1, ∀i, (3)

where the first term is the representation cost, the second term is the
sparsity term that prefers the learners with higher fitness, and the
third term is the cooperation term. α1 and α2 control the trade-off
among the three terms. Following Elhamifar et al. [37], α1 = α2 =
0.5αmax, αmax is the maximum distance between learners.

In the first term, to calculate the representation cost, we need
to define the distance between a base learner and a sample. A
straightforward way is based on the prediction accuracy. However,
we cannot evaluate the accuracy without ground-truth labels.
Instead, we use the prediction confidence to measure the distance
because samples with high prediction confidence tend to be
classified correctly [39]. The prediction confidence of learner θk on
xi is defined as the difference between the largest and the second-
largest probabilities in the predicted label distribution yi, which is
denoted as mki ∈ [0,1]. The distance between the learner θk and
the sample xi is then defined by dki = 1−mki because we prefer
the base learners with larger confidence mki.

In the second term, to encourage the selection of base learners
with higher fitness, we emphasize the ones that better predict the
given shots. A widely used measure, likelihood, is employed to
estimate the fitness value. Accordingly, we add λk for each learner
θk, which is defined as its negative log-likelihood on the shots.

In the third term, to encourage the cooperation between two
learners, θk and θl , we penalize the difference between their
predictions. Let yki and yli be the label distribution of sample
xi predicted by θk and θl , respectively. Following the previous
work of Dvornik et al. [1], the prediction difference is mea-
sured by the symmetric KL-divergence between their predictions:
µkl = ∑

N
i=1(KL(yki||yli)+KL(yli||yki))/(2N). µkl is 0 if the two

learners make the same predictions.

5.3 Shot Selection

Shot selection aims to find a very small set of shots that better
represents all the samples. Here, both U and V refer to the sample
set {xi}N

i=1. Rather than treating the samples equally in the sparsity
term of Eq. (2), we tend to select the low-confidence samples with
higher representativeness since selecting them as shots can help the
model distinguish more low-confidence samples [40]. Moreover,
we try to preserve the given shots to reduce the analysis burden
and labeling efforts. Accordingly, Eq. (2) is rewritten as:

N

∑
j=1

N

∑
i=1

zi jdi j +α

N

∑
i=1

βiγi max
j

zi j

s.t. zi j ≥ 0, ∀i, j;
N

∑
i=1

zi j = 1, ∀ j,

(4)

where the first term is the representation cost of the shots, and the
second term is the sparsity term with preference on the previous
shots. α controls the number of recommended shots. If we want
to recommend Ns shots, we then set α = αmax/Ns, where αmax is
the maximum distance between samples.

In the first term, the distance between samples xi and x j is
calculated by averaging the cosine distances between their features
extracted by the selected base learners.

In the second term, to encourage the selection of the low-
confidence samples and given shots, we add a confidence co-
efficient γi and a stability coefficient βi for xi. The confidence
coefficient favors the selection of low-confidence samples with
higher representativeness. Accordingly, γi is set to its average
prediction confidence of the selected learners. A sample with lower
confidence results in a lower penalty in the sparsity term and then
tends to be selected. The stability coefficient aims to preserve the
given high-quality shots. Accordingly, βi is set to 0.1 if xi is a
given shot. Otherwise, βi is set to 1.

5.4 Time Complexity Analysis
The time complexity of sparse subset selection is O(|U ||V |) [37].
As the number of learners is not large, the running time of the
learner selection is usually acceptable. However, the number of
samples is relatively large, and thus, the shot selection algorithm is
rather slow in computation. For example, it takes around 7 seconds
to recommend shots from 1,000 samples. To tackle this issue, we
first randomly sample a subset of samples and then recommend
learners and shots based on the subset. The effectiveness of this
sampling strategy is evaluated in Sec. 7.1.3.

6 FSLDIAGNOTOR VISUALIZATION

Although the sparse subset selection algorithm recommends a
set of base learners and a few high-quality shots, the automatic
recommendation results are not always perfect. For example, using
likelihood to measure the quality of base learners is sometimes not
accurate since the number of shots is very limited. In addition, an
ambiguous shot wrongly representing some samples usually leads
to more misclassification and thus the low representativeness of the
shots. To better explain the recommendation results and facilitate
the interactive tuning of the recommended learners and shots, we
design a visualization-based explanatory environment. It consists of
two components: 1) a learner view (Fig. 1(a)) to compare each base
learner with the ensemble model in terms of prediction behavior
(R1); and 2) a sample view (Fig. 1(b)) to present the shots and
unlabeled samples in context (R2). The two coordinated views
enable users to easily adjust the shots and the learners without
considering the architectures of the learners (R3).

6.1 Learner View
Due to the familiarity of users with the matrix visualization and its
intuitiveness [41], we employ it to compare a base learner with the
ensemble model and different learners (Fig. 1(a)). Users can tune
the selection of learners or adjust their ensemble weights based on
the comparative analysis.
Visual design. Our first design focuses on the pairwise comparison
between base learners, including the agreements and differences
between the predictions of two learners. We design a matrix with
zoomable cells (Fig. 5(a)) to present the pairwise comparison
results where rows and columns represent learners. A sequential
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The total number of samples predicted to be
of a certain class by learner     or learner   

learner     only

Samples predicted to be
of a certain class by

both learner     and   
learner     only

(a) Matrix with zoomable cells (b) Encoding

Fig. 5. The alternative design of the learner view. Both rows and
columns represent base learners. A darker cell indicates a larger
prediction difference between the two learners.

color scheme from white to black is used to encode the total
number of samples that are predicted differently by the two
learners. Users can click on a cell of interest and zoom into it for
the details of prediction behavior, which is depicted by a coxcomb
chart. In this chart, each sector represents a class that samples are
predicted to be of. A sector consists of three clockwise sub-sectors
in the same hue (Fig. 5(b)), which represents the samples predicted
to be of the same class by learner A only, by both learners A and
B, and by learner B only, respectively, where A is represented by
the row, and B is represented by the column. The total number
of samples that are predicted to be of this class is encoded by the
radius of the sector. The experts agree that the comparison between
two learners is helpful. They like the design of three sub-sectors
that illustrate the agreement and difference between two learners.
However, they are more interested in comparing a base learner with
the ensemble model instead of comparing two learners (issue 1).
The pairwise comparison fails to explain the role of a base learner
in the ensemble predictions. Another concern is that this design
does not support the comparison across different base learners on
a specific class (issue 2), which is important for diagnosis.

To tackle these issues, we augment the matrix visualization
to emphasize the comparison between the base learners and the
ensemble model (issue 1) and enable class-level comparison (issue
2). In the matrix visualization (Fig. 6(a)), each row represents a base
learner. The first column encodes the number of samples predicted
differently between a base learner and the ensemble model (issue
1) with a sequential color scheme. The darker the cell is, the larger
the difference is. The remaining columns present the comparison
between a base learner and the ensemble model (issue 1) in terms
of each class (issue 2). Instead of using the coxcomb chart in the
first design, we employ a common visual metaphor, the stacked bar,
to represent the agreement and difference between the predictions.
As shown in Fig. 6(b), the length of the stacked bar encodes the
total number of the samples predicted to be of a certain class by
the base learner and/or the ensemble model. The hue of the stacked
bar encodes the class. As the experts are more familiar with the
stacked bars, they can quickly identify the differences between each
learner and the ensemble model under different classes. Fig. 6A
is an example where base learner “BL-A” mostly agrees with the
predictions made by the ensemble model on class “c1.” However,
there are many samples that are only recognized by “BL-A.” As a
result, the first bar is much longer than the third bar. This indicates
that “BL-A” over-predicts on class “c1.” Similarly, we find that
“BL-A” under-predicts on class “c2” (Fig. 6B).

The experts give positive feedback to the new design during our
interviews. Later, two experts express the need to investigate the

all c1 c2

BL-

Predicted to be of c2 by learner

Predicted to be of c2 by both

Predicted to be of c2 by ensemble
0.75 1.00
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(a) Matrix with zoomable cells (b) Encoding

A B

Fig. 6. The design of the learner view. Rows represent base
learners, columns represent classes, and cells disclose the
agreements and differences between the predictions of the base
learners and ensemble model.

prediction confidence of the samples. After a thorough discussion,
we use a histogram to convey the number of samples that are
predicted by the learner/ensemble model with four different
confidence bins (Fig. 6(b)). However, if one bar is not shown in a
confidence bin due to the zero value, it is inconvenient for users to
identify which one is not displayed (Fig. 7(a)). A straightforward
solution is to preserve a minimum height for each bar (Fig. 7(b)).
However, such a thin bar (Fig. 7B) is difficult to be distinguished
from other bars with very small values (Fig. 7A). Another option is
to place the thin bar on the x-axis to avoid such misunderstanding
(Fig. 7(c)). After using it, the experts point out that it may be
misunderstood as a negative value (Fig. 7C). To tackle this issue, we
add a default thin darker bar for each item on the x-axis (Fig. 7(d)).
Visualization scalability. Although the matrix visualization helps
users efficiently examine the predictions of learners, it suffers the
scalability issue when the number of learners/classes increases.
To tackle this, we cluster similar learners (or classes) using
agglomerative clustering [42]. The key of the clustering method is
to calculate the distance between learners (or classes). The distance
between learners is measured by the symmetric KL-divergence
of their predictions. The distance between classes is calculated
as the Euclidean distance in the feature space. Since each class
can be characterized by its shots, one common way to represent
the class is by averaging the shot features (shot-based feature).
However, it can be inaccurate due to the scarcity of shots. To
compensate for this, we consider the word embedding of the class
label (label-based feature), which is extracted by GloVe [43], a
widely used word embedding model. We then obtain a more robust
feature representation by concatenating the shot- and label-based
features. Several interactions are provided to explore the clusters.
For example, users can expand a cluster by double-clicking the
associated rectangle and adjust the clustering result by dragging-
and-dropping the rectangles. The clusters of less interest can be
hidden to minimize distraction by clicking .

(a) Initial design (b) Add thin bars for zero values

(c) Move thin bars to x-axis (d) Add darker thin bars

A B

C

Fig. 7. Four designs for comparing the prediction confidence of
samples: (a)-(c) alternative designs; (d) our design.
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6.2 Sample View
Visual design. The sample view (Fig. 1(b)) enables users to
examine the shots in the context of samples and tune their selection.
For each sample, we first concatenate the features extracted by
the base learners. Next, to achieve better class separation [44], we
employ t-SNE to project the samples onto 2D space and utilize
a scatterplot to visualize the projections. In the scatterplot, stars
and circles are used to represent shots and unlabeled samples,
respectively. Samples are colored according to their classes, and
those with a confidence less than 0.2 are colored gray. For each
shot, we utilize a clutter-aware label-layout algorithm [45] to place
the image content close to the shot and reduce the overlap with
other scatter points. When users select the samples of interest, the
image content and label distributions are displayed at the bottom
of the view (Fig. 1(b)). The label distributions are represented by
colored bars, where the color encodes the class, and the length
encodes the prediction probability. Users can click the checkbox
on the right side to add it as a shot or remove it from the shot set.

The sample view also illustrates the influence of the base
learners and shots in the ensemble model. The influence of a
learner is measured by the prediction confidence change of the
ensemble model with/without the learner. If the confidence of a
sample increases by 0.2 or more after adding the selected learner,
the sample will be automatically marked with an upward arrow↑. If
the confidence decreases by 0.2 or more, the sample will be marked
with a downward arrow↓↑ . We also use a gray density map as a
guidance to highlight the regions where a larger increase/drop in
confidence happens (Fig. 9B). Such regions indicate the conflicted
predictions between the selected learner and ensemble model and
need to be further checked. The influence of a shot is characterized
by its coverage, which contains its associated unlabeled samples
with high similarity. The associated unlabeled samples with higher
similarity are encoded by darker class colors. Fig. 8 shows the
coverage of two shots. The first one is a high-quality shot of digit
“1” since it influences a large number of neighboring samples that
are correctly predicted with high confidence (Fig. 8(a)). In contrast,
the second one is a low-quality shot of digit “3” because it only
covers a few samples predicted with low confidence (Fig. 8(b)).
Visualization scalability. The scatterplot inevitably suffers from
the scalability issue when the number of samples grows [46].
To address this issue, we build a hierarchy by utilizing the
random sampling strategy in a bottom-up manner [35]. Random
sampling is employed because it can well preserve the overall data
distribution [47]. When navigating the hierarchy, the sampled data
at the current level are visualized using scatter points, and the
others using a density map.

6.3 Incremental Improvement of Learners/Shots
To facilitate the diagnosis of the ensemble few-shot classifier,
FSLDiagnotor provides a few interactions to assist in 1) improving
the selection of base learners; 2) adjusting the ensemble weights
of base learners; 3) enhancing the quality of shots; 4) mutually

(a) (b)

Fig. 8. The coverage of two shots: (a) a high-quality shot with many
similar samples; (b) a low-quality shot with few similar samples.

all 1 4 7 1 4 7

BL-tiered-2

BL-tiered-5

BL-tiered-6

A CB

Fig. 9. “BL-tiered6” causes a confidence drop in B, and C shows
some samples in B are only predicted to be of “1” by “BL-tiered6.”

improving the learners and shots if either of them is adjusted. Here,
recommendation-related interactions (e.g., recommend shots) and
the weight adjustment are examples of semantic interactions [48],
which enable smooth communication between the user and the
analytical model without direct manipulation of the model.
Improving the selection of base learners. FSLDiagnotor allows
to remove low-quality learners and add high-quality ones. To decide
which one is of low/high quality, we allow users to 1) explore the
influence of the learners on the ensemble model to identify the key
samples that are predicted differently by them; and then 2) examine
the prediction difference between the learners and the ensemble
model on these samples. For example, Fig. 9 shows that there is
a larger difference between “BL-tiered6” and the ensemble model
(Fig. 9A). Users can click “BL-tiered6” to examine its influence
and find that it causes a large confidence drop in a region (Fig. 9B).
After selecting samples in this region using the lasso, these samples
are highlighted on the associated bars with a solid filling style

. From these bars, it can be seen that some samples are only
predicted to be of “1” by “BL-tiered6” (Fig. 9C). By clicking
the associated bar (Fig. 9C), these samples are highlighted in the
sample view for further examination. If the selected learner makes
many wrong predictions on these samples, users can remove it.
Adjusting the ensemble weights of base learners. The ensem-
ble weight is important for the model performance. Although
automatic weight adjustment is an efficient way to achieve this,
it requires some extra validation samples with labels [49]. Since
these validation samples are not available in few-shot applications,
FSLDiagnotor supports a semi-automatic adjustment of the ensem-
ble weight of a learner to emphasize/de-emphasize it. For example,
after examining a set of selected samples (S1) that are predicted dif-
ferently by the selected learner and the ensemble model, users can
click N to increase its weight if its predictions are mostly correct,
or click H to decrease its weight otherwise. Since the exact weight
is hard to decide, our tool automatically calculates the weight based
on the prediction behavior of this learner and the ensemble model.
Specifically, ∀x j ∈ S1, the final prediction of the ensemble model y j
should be consistent with y′j, i.e., 1) the prediction of the learner if
users increase its weight or 2) the prediction of the ensemble model
without the learner if users decrease its weight. Moreover, ∀x j ∈ S2,
where S2 is the set of unselected samples, the final prediction y j
should be as same as possible to the previous prediction yprev

j . Based
on the two considerations, the weight is decided by maximizing:

∑x j∈S1
I(y j = y′j)

|S1|
+

∑x j∈S2
I(y j = yprev

j )

|S2|
. (5)

The first term and the second term measure the prediction
consistency on S1 and S2, respectively. I(·) is the indicator function.
It equals 1 if the prediction is consistent, and 0 otherwise. This
optimization problem is solved by a grid search.
Steering the selection of shots to enhance the quality.
FSLDiagnotor allows users to interactively enhance the quality
of shots by removing the low-quality ones and adding necessary
new ones in a steerable way. For example, users can identify the
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regions lacking shots and then label some of them. As shown
in Fig. 10B, digits “0” (blue) are mostly misclassified to be of
“8” (pink) since there are no shots of digit “0” in this region. To
improve the shot coverage in this region, users can manually add
a few shots of “0” or click “Recommend Shot” to ask the tool
to automatically recommend the candidate shots. In addition, if
one class is predicted with low confidence, users can examine the
associated samples to figure out the potential reason. Accordingly,
users can click the bars in the matrix cell to examine the associated
samples in the sample view.
Mutually tuning the learners and shots. In ensemble few-
shot classification, learners and shots work together for the final
predictions. Generally, the change of learners influences the
coverage of shots and vice versa. Thus, if the learner set or the
ensemble weights are changed, the shots should also be updated
to adapt to the corresponding change. To this end, users click
“Recommend Shot.” Then the shot selection algorithm is used to
automatically recommend the shots. On the other hand, if the shots
are changed, users can click “Recommend Learner” to obtain a
better combination of learners by the learner selection algorithm.
Such a process of mutual refinement saves users’ time and efforts.

7 EVALUATION

We conducted three experiments to evaluate the effectiveness of
our subset selection algorithm. We also demonstrated the usability
of FSLDiagnotor through two case studies. In the evaluation, we
used the datasets with ground-truth labels to simulate the labeling
process of users and calculate the accuracy.

7.1 Quantitative Evaluation on Subset Selection
7.1.1 Datasets and Setups
Datasets. We evaluated the learner and shot selection algorithms
with four widely used datasets: mini-ImageNet [50], tiered-
ImageNet [51], MNIST [52], and CIFAR-FS [53]. Mini-ImageNet
consists of 80 seen classes and 20 unseen classes, each of which
contains 600 images. Tiered-ImageNet contains 779,165 images
of 608 classes (448 seen and 160 unseen classes). The seen classes
of these two datasets were used for training base learners, while
the unseen classes were used to evaluate the performance of the
model. MNIST has 20,000 images of 10 unseen classes, and the
images are augmented by inverting color. CIFAR-FS has 12,000
images of 20 unseen classes.
Base learners. We used 24 base learners in the ensemble
model. Sixteen of them are trained from scratch using ResNet-
12 backbone [12], where 8 of them are trained on different
subsets of the seen classes of the mini-ImageNet dataset, and
the other 8 are trained on those of the tiered-ImageNet dataset.
The remaining 8 base learners are pre-trained on external datasets,
e.g., natural images in ImageNet [54], handwritten characters in
Omniglot [55]. We directly used the model parameters taken from
publicly available implementations provided by Dvornik et al. [11].
Evaluation criteria. We evaluated the performance in terms of
classification accuracy, which is averaged over 100 trials.

7.1.2 Effectiveness Evaluation of Sparse Subset Selection
In this experiment, we evaluated whether the learner and shot
selection algorithms can boost the few-shot classification accu-
racy on four datasets. Due to the limited number of shots, the
randomness of few-shot classification is relatively high. To reduce

the effect of such randomness, more trials are needed [10]. To
perform the evaluation efficiently, we used less samples for each
class by following the common practice in few-shot learning [56].
In particular, for mini-ImageNet and tiered-ImageNet, each task
is a 5-class classification containing 5 randomly selected unseen
classes, and each class contains 5 shots. For MNIST and CIFAR-FS,
we used all the unseen classes (10 and 20, respectively) in the tasks.
To simulate real-world applications, we do not guarantee that each
class has the same number of shots. Instead, we randomly select 30
and 60 samples as shots (each class has 3 shots on average) from
these two datasets, respectively. Each class of the four datasets
contains 15 unlabeled samples. The baseline is obtained by using
all the base learners and initial random shots in the ensemble
model. Our method employs both the recommended base learners
and recommended shots. For a fair comparison, the number of the
recommended shots is set to be the same as that of the initial shots.
The average number of the recommended learners over 100 trials is
shown in Table 1. We compared our method, two ablations that only
use either recommended learners (Rec. Learners) or shots (Rec.
Shots), the state-of-the-art method, TIM [56], and the baseline.

TABLE 1. Classification accuracy on four datasets. The average
numbers of recommended learners are given in parentheses.

Model mini tiered MNIST CIFAR-FS
Baseline 0.873 0.849 0.476 0.447
TIM [56] 0.874 0.898 - -

Rec. Shots 0.877 0.862 0.611 0.517
Rec. Learners 0.880 (3.9) 0.868 (3.6) 0.481 (4.3) 0.480 (5.2)
Our method 0.896 (3.9) 0.908 (3.6) 0.615 (4.3) 0.541 (5.2)

As shown in Table 1, using either recommended learners
or shots alone can boost the performance on all datasets, and
combining them together can further improve the performance. By
comparing the recommended learners/shots with the initial ones,
we found that the low-quality learners/shots, such as a learner that
has poor performance and predicts differently from the majority,
were removed. Some high-quality learners/shots, such as a shot that
well represents the unlabeled samples but does not appear in initial
shots, were added. This is the main reason why the developed
subset selection algorithms can boost the performance.

7.1.3 Balance between Effectiveness and Efficiency
In our implementation, the random sampling strategy is employed
to reduce the time cost for tasks with tens of thousands of samples
or more. Here, we conducted this experiment to 1) investigate
whether this sampling strategy can reduce the time cost while
achieving comparable performance to that of running the algorithm
on all the samples, and 2) determine the smallest sampling
ratio needed to meet this requirement. We adopted different
sampling ratios (1%, 2%, 3%, 4%, 5%, 6%, 7%, 10%, 100%)
for recommending learners/shots, and calculated the accuracy on
all the samples except shots.

Table 2 shows that the accuracy increases with the number of
samples when the sampling ratio is lower than 5%. However, when

TABLE 2. The accuracy using different sampling ratios (SR).

SR 1% 2% 3% 4% 5% 6% 7% 10% 100%
mini 0.838 0.865 0.874 0.882 0.886 0.889 0.891 0.891 0.893

tiered 0.851 0.875 0.887 0.895 0.899 0.901 0.901 0.902 0.907
MNIST 0.591 0.592 0.597 0.601 0.598 0.599 0.603 0.602 0.609

CIFAR-FS 0.526 0.531 0.542 0.548 0.550 0.551 0.547 0.554 0.554
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the sampling ratio is greater than 5%, the pace of the increase
begins to slow down. Based on this observation, we drew the con-
clusion that using a small subset of samples can achieve comparable
accuracy to that of using the full samples. Furthermore, the sam-
pling ratio of 5% is a good balance between efficiency and accuracy.

7.1.4 Analysis on Diversity and Cooperation
The goal of this experiment is to evaluate the diversity and
cooperation between learners. We use the Jaccard Index to measure
the diversity between learners, which is widely used to measure
the difference between two sets [57]. Let Sθk and Sθl be the set of
high-confidence samples (> 0.2) predicted by two learners θk and
θl , respectively. The diversity is defined as |Sθk ∩Sθl |/|Sθk ∪Sθl |.
A smaller value indicates that the two learners are more diverse.
We use the symmetric KL-divergence to measure the cooperation
between learners, which is introduced in Sec. 5.2. A smaller
value indicates that the two learners are more cooperative. The
diversity/cooperation of a set of learners is defined as the average
of all pairwise diversity/cooperation between two learners. Table 3
shows that on all the datasets, our method recommends a set of
more diverse and cooperative learners.

TABLE 3. Comparison of the diversity and cooperation between
all learners and recommended learners. The smaller values indicate
that the recommended learners are more diverse and cooperative.

Diversity Cooperation
All Rec. Diff All Rec. Diff

mini 0.124 0.063 49.2% 0.959 0.204 78.7%
tiered 0.138 0.082 40.6% 0.942 0.336 64.3%
MNIST 0.449 0.208 53.7% 1.045 0.531 49.2%
CIFAR-FS 0.321 0.264 17.8% 2.311 0.961 58.4%

7.2 Case Studies
In the case studies, we used the same 24 base learners employed
in the quantitative evaluation. To demonstrate the generalization
of our approach to new tasks, we used the MNIST and CIFAR-FS
datasets because there are no base learners pre-trained on them.
Based on the experiment results in Sec. 7.1, we select a trial
with higher accuracy for each dataset. The experts started from
the setting of recommending learners because it does not need
any human involvement. When performing the case studies, we
followed the pair analytics protocol [58], where the expert guided
the exploration, and we interacted with the tool. This protocol helps
the experts focus more on the analysis of the model.

7.2.1 MNIST Dataset
In this case study, we collaborated with expert E1 to understand
and diagnose a model built on the MNIST Dataset [52]. She is
interested in knowing how FSLDiagnotor supports the selection
of base learners and the enhancement of the shots, thus improving
the accuracy of the model. The experiment in Sec. 7.1.3 indicates
that a sampling ratio of 5% can better balance performance and
efficiency. Thus, E1 sampled 5%×20,000 = 1,000 samples.
Overview. E1 first observed that four base learners were rec-
ommended by FSLDiagnotor (Fig. 1(a)). She then examined the
selected base learners and noticed that “BL-tiered6” made many
different predictions from the ensemble model (Fig. 1A). This
needed further investigation to figure out the reason. In the sample
view, she observed that the samples were separated into two groups,
with the upper ones being samples of black digits with a white
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Fig. 10. Analyzing “BL-tiered6.” With it in the ensemble model,
three regions (A, B, C) have a larger drop in prediction confidence.

background (e.g., Fig. 1C, D), and the lower ones being samples
of white digits with a black background (e.g., Fig. 1E, F). Most
of the regions were covered by the given shots well (e.g., Fig. 1C,
E). However, there were a few regions not covered by the shots
(Fig. 1D, F), where some samples (in gray) were predicted with
low confidence. Using the 4 recommended base learners (R1), the
accuracy was 0.513. The accuracy was calculated offline before
and after the corresponding operations to verify the effectiveness
of the improvement with our tool.
Learner-based improvement. E1 started the analysis from the
base learners. E1 first examined the selected base learners for
potential improvement. Since “BL-tiered6” made more different
predictions from the ensemble model, she clicked on this learner
to examine on which samples it made different predictions. These
samples were highlighted in the sample view. Three gray density
area also appeared in the sample view, indicating a larger drop in
prediction confidence (Fig. 10A, B, C). She decided to examine
these three regions one by one.

E1 began the analysis with region A, where most samples
were black digits “3” and “5.” She noticed that the ensemble model
misclassified most samples of “3” to be of “5” or “8,” and some
samples of “5” to be of “8.” Checking the shots near this region,
she found that there was no shot of digit “3” and only one shot of
digit “5.” She decided to add more shots by selecting the samples
in this region and clicking “Recommend shot.” Samples of “3” and
“5” were recommended, which met her expectation. She added one
shot for “3” and one shot for “5” (R2). Then E1 switched to region
B. To her surprise, the region contained the samples of black digit
“0,” but both the learners and the ensemble model misclassified
them to be of “8” (Fig. 10D). The reason was that there were
no shots of black digit “0” (Fig. 11(a)), so the nearest shots of a
black digit “8” influenced the predictions of these samples. These
misclassifications can be corrected by adding more shots of black
digit “0.” Since the samples of “0” in this region looked quite
similar, she directly labeled one of them as a shot (R2). E1 further
examined region C, where most samples were white digits “4.”
The learner view showed that most of the base learners, as well
as the ensemble model, made the correct predictions (Fig. 10F).
However, “BL-tiered6” misclassified some of them to be of “1”
(Fig. 10E). She noticed that “BL-tiered6” over-predicts on “1”
compared with other base learners (Fig. 1B). She clicked the bar
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(a) Given shots

(b) Add new shots

(c) Enhance the given shots

(d) Recommend shots in round 1

(e) Recommend shots in round 2

Fig. 11. Enhancing the quality of the given shots (a) by going
through steps (b)-(e). The samples with green borders are recom-
mended to be removed.

and found that many samples of white digits “7” were also predicted
to be of “1” by “BL-tiered6.” She then concluded that “BL-tiered6”
was confused about how to classify the white digits “1,” “4,” and
“7,” which caused the drop in the prediction confidence (Fig. 10C).
Due to the poor performance of “BL-tiered6” in region C, she
decided to remove it (R1). After these adjustments, the model was
updated. The accuracy was improved from 0.513 to 0.582. E1 was
satisfied that 1) the added shots well covered those two regions
(Fig. 10A’, B’); 2) removing “BL-tiered6” increased the confidence
of the samples in region C from 0.453 to 0.525.
Shot-based improvement. To adapt to the change of the base
learners, she used our tool to automatically detect low-quality
shots and recommend high-quality ones. Inspired by the query
strategy in active learning [59], E1 decided to add a few shots
(3-5 shots) in each recommendation. The recommended shots to be
added/removed were displayed at the bottom of the sample view.
She found two low-quality shots with poor coverage (e.g., Fig. 8(b))
were detected and removed them (the samples in Fig. 11(c) with a
green border) by clicking the checkbox. For the shots to be added,
E1 found that a white digit “8” and two white digits “9” were
recommended, which did not appear in the given shots (Fig. 11(a)).
To supplement the shot set that does not contain any white “8”
and “9,” she selected one from each class, respectively (samples
in Fig. 11(c) without border). E1 updated the model with the new
shot set, increasing the accuracy from 0.582 to 0.622. E1 repeated
the recommendation operation again and selected five more shots
(Fig. 11(d)), the accuracy was improved to 0.664.
Mutually tuning between the base learners and shots. To
further improve the performance, she switched back to the learner
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Fig. 12. “BL-tiered2” lowers the prediction confidence in region
B. These samples are of “6” but mis-predicted to be of “8” by
the ensemble model. In contrast, “BL-tiered2” and “BL-omniglot”
make more correct predictions on them.

view to see if there were any changes after updating the shots.
After examining the three selected learners one by one, she found
that “BL-tiered2” (Fig. 12A) lowered the prediction confidence
of some samples in a small cluster. This cluster contained some
samples with black digits “6” (Fig. 12B). While “BL-tiered2” and
“BL-omniglot” classified them correctly (Fig. 12C), the ensemble
model misclassified some of them to be of “8” (Fig. 12D). The
distribution of confidence showed that these two learners were more
confident than the ensemble model (Fig. 12F, G). As “BL-tiered2”
was already selected in the ensemble model, E1 clicked N to
increase the weight of “BL-tiered2.” She also added “BL-omniglot”
to the ensemble model. She commented that Omniglot [55] was a
dataset containing different handwritten characters and was similar
to MNIST. She considered that a learner trained on this dataset
would be beneficial to the current task. In addition, it increased
the diversity among the learners as its predictions differed much
from the ensemble model (Fig. 12E). After increasing the weight of
“BL-tiered2” and adding “BL-omniglot” into the ensemble model
(R1), the accuracy was improved from 0.664 to 0.680. E1 then
added three more shots (Fig. 11(e)) to adapt to the learner change
(R2), and the accuracy increased to 0.707.
Summary. E1 removed 2 low-quality shots and added 13 shots
in total. The final accuracy was 0.707. To achieve comparable
performance, the random selection strategy requires 68 more shots
and the automatic shot selection algorithm requires 28 more shots.
E1 was satisfied with the ability of FSLDiagnotor in helping her
identify misclassified regions and verify the recommended learners
and shots for such a simple classification task.

7.2.2 CIFAR-FS Dataset
This case study demonstrates the capability of our tool in boosting
performance on a natural image dataset, CIFAR-FS [53]. In this
case study, we collaborated with E2. As the task involved more
classes and contained only 12,000 samples, E2 increased the
sampling ratio to 10% and obtained 1,200 samples.
Overview. To improve readability, 20 classes were grouped into
10 clusters. Most clusters looked reasonable. For example, “baby,”
“man,” “woman” were in the same cluster, and “bicycle” and “truck”
were in another (Fig. 13). However, E2 found that “plain,” “bed,”
“table,” “phone” formed a cluster while “wardrobe” formed another
one. The sample view (Fig. 14(a)) showed that “bed” (Fig. 14A),
“table” (Fig. 14A), and “wardrobe” (Fig. 14B) were closed to each
other, and “plain” (Fig. 14C) was away from them. So he dragged
“wardrobe” into the cluster and moved “plain” out as another cluster.
Seven base learners were recommended, including five ones trained
on tiered-ImageNet and two ones trained on mini-ImageNet. With
the recommended learners, the accuracy of the ensemble was 0.497.
Diagnosing the clusters with poor performance. He first
examined the cluster with the lowest confidence (0.172), which only
contained the class “fox” (Fig. 13). Twelve samples were predicted
to be of “fox.” However, some of them were images with leopards
(Fig. 14B2, B3). In this class, there was only one shot (Fig. 14B1).
Both the learners and ensemble model have low confidence on
the predictions. E2 commented that one shot was insufficient to
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Fig. 13. The initial class clusters and their prediction confidence.
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Fig. 14. Analysis of the CIFAR-FS dataset: (a) the sample view;
(b) lack of shots for “fox;” (c) an outlier shot of “snail;” (d) poor
diversity of the shots of “snail;” (e) the prediction behavior of two
learners for “snail.”

distinguish “fox” from “leopard.” So he added 4 shots for “fox”
and 2 shots for “leopard” (R2) and then updated the model. The
confidence increased to 0.288, and the accuracy reached 0.503.

Next, he moved to cluster “snail&worm” with a lower confi-
dence of 0.257. After zooming in the cluster, he found that the
confidence of “snail” was only 0.228, and many samples of “pepper”
(Fig. 14C2, C3) were predicted to be of “snail.” E2 examined the
sample view and found a shot of “snail” that contained a red object
(Fig. 14C1). He speculated that this shot disturbed the classification.
After removing it (R2), the confidence reached 0.294. Then he
examined the learner view and noticed the shorter length of the
stacked bar charts for “snail” (Fig. 14(e)). This indicated that
only a few samples were predicted to be of “snail.” To figure out
why, he examined the base learners and found that “BL-tiered5”
over-predicted on “snail.” The over-predicted samples were snails
on non-green backgrounds (Fig. 14D2, D3) instead of the green
background in the shots (Fig. 14D1). He labeled three such samples
to augment the diversity of the shots of “snail” (R2). Moreover,
he found that some samples of “snail” and “worm” were mixed
and hard to be classified (Fig. 14D). He used FSLDiagnotor to
recommend two more shots for each of these two classes and
updated the model (R2). The confidence increased to 0.378, and
the accuracy was 0.530.

He continued to diagnose cluster “baby&man&woman” (con-
fidence: 0.314) in a similar way, and the accuracy reached
0.541 after labeling 2 shots for “man” and 2 shots for “woman”
(R2). After removing the outlier shots in the largest cluster
“bed&table&phone&wardrobe” and adding six shots for “bed” and
“table” (R2), the accuracy reached 0.561.
Improving base learners and shots. The aforementioned diag-
nosis added/removed some shots. To adapt to these changes, E2
used FSLDiagnotor to recommend the learners and removed “BL-
mini7” and “BL-tiered5” (R1). The accuracy remained to be 0.561.
To adapt to the change of the base learners, 14 more shots were
also recommended (R2), and the accuracy increased to 0.594.
Summary. E2 successfully improved the accuracy from 0.474 to
0.594 with only 37 extra shots. To achieve comparable performance,
the random selection strategy requires 115 extra shots, and the

automatic shot selection algorithm requires 75 extra shots. He
was satisfied that FSLDiagnotor helped find a variety of quality
issues of shots more efficiently. “I do not realize that the shot like
Fig. 14C1 hurts performance until I see those misclassified samples.”
He further pointed out that it was usually difficult to provide
representative shots exhaustively. The exploratory environment of
the tool helps find the missing shots.

8 EXPERT FEEDBACK AND DISCUSSION

To evaluate the usefulness of FSLDiagnotor, we conducted six
semi-structured interviews with the three collaborated experts (E1,
E2, E3) and three newly invited ones (E4, E5, E6). The three new
experts are Ph.D. students who have worked in the field of machine
learning for 5, 3, and 2 years, respectively. In each interview, we
spent 5 minutes introducing the design of our tool. Then the experts
played with the tool to get familiar with it. For example, they tried
to improve the performance by adjusting the selection of learners
and/or enhancing the quality of shots. Finally, we presented our
case studies and gathered their feedback. Each interview lasted
approximately 45-65 minutes. All experts were generally positive
about the usability of FSLDiagnotor. They also pointed out a few
limitations, which shed light on future work.

8.1 Usability
Facilitating the performance improvement. Encouragingly,
our experts agreed that FSLDiagnotor was useful for improving
model performance. E1 liked the shot quality enhancement module.
“Generally, some initial shots are probably of low-quality. I would
like to remove the low-quality ones and annotate a few more shots
for better performance. The tool recommends high-quality shot
candidates for labeling, which reduces my workload.” E5 was
impressed by the promising accuracy improvement from 0.513 to
0.582 with only three shots added in the MNIST case. In addition,
the experts indicated that FSLDiagnotor not only provided an
effective way to address the scenarios where only a few shots were
available, but also an efficient mechanism to label a set of diverse
shots that can better represent the unlabeled samples.
Being easy to use and reducing analysis efforts. The experts
agreed that the visual design was familiar and easy to understand.
E2 commented, “The stacked bar chart is very intuitive and clearly
explains the prediction agreement and difference between the
learner and ensemble model.” E4 believed that our tool could be
used by practitioners easily, “They are familiar with bar charts
and scatterplots, so according to my experience, 15-30 minutes
should be enough for them to get familiar with this tool.” E3
shared his experience of improving the performance, “An effective
way to improve the performance is to label more shots in the
regions that contain many samples with low confidence. Such
regions are highlighted with gray density and easy to identify. With
the recommendation function, I only examine the recommended
samples from these regions and label the appropriate ones.” The
experts also commented that although extra analysis of the learners
and samples was needed, the efforts were small because of the
visual guidance and semantic interactions. Thus, their overall
analysis efforts were reduced.

8.2 Limitations
Generalization. In addition to classification tasks, the experts also
expressed the need to apply our tool to handle object detection and
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segmentation. After discussion, we found that the only change was
induced by the IoU (Intersection over Union) measure employed
in these tasks, which represents the area ratio of the intersection
to the union of two shapes. Unlike the binary variable used in
the classification task to indicate whether a sample belongs to
a class or not, the IoU score is a value between 0 and 1. An
interesting problem worth studying is how to effectively convey
the distribution of the IoU scores in the learner view. In addition,
the experts expressed their need to analyze non-ensemble few-
shot models, such as generative models and meta-learning [2].
The subset selection algorithm and the sample view could be
directly used to enhance the quality of shots and make adjustments.
However, the learner view needs to be re-designed to adapt to the
analysis of a single model. We leave this as future work.
Algorithm scalability. The shot recommendation is frequently
performed to improve the performance in the analysis process. The
experts usually select a region for the detailed examination, which
contains at most thousands of samples. For such cases, the subset
selection algorithm can recommend shots in real-time. However,
when first providing the overview in the pre-processing stage, the
recommendations are from the whole dataset. It may still introduce
the scalability issue into this offline process when the dataset
consists of tens of thousands of samples or more. For example, it
takes around 20 hours to recommend shots from 100,000 samples.
It is worth studying how to reduce the pre-processing time. For
example, we can study how to use progressive visual analytics
techniques [60], [61] to recommend necessary shots progressively.

8.3 Lesson Learned

Using simple and familiar visualization. During the interviews,
the experts appreciated the simple and familiar visual designs used
in our tool. A simple and intuitive visualization requires less time
to learn and allows them to focus more on their analysis tasks. For
example, E2 commented, “The learner view can be regarded as
a variant of the confusion matrix, with which I am very familiar.
Thus, I can go directly to analyze the root cause of low performance,
which saves my time and efforts.” The experts also pointed out
that the visualization could be used in other tasks. For example,
all the experts commented that they would like to use this tool to
analyze a generic ensemble model, which they commonly used in
various tasks. The experts also indicated that the learner view can
be directly used to compare datasets from different perspectives.
Employing steerable visualization. During the development of
FSLDiagnotor, we find that steerable visualization is an effective
method to address the scalability issue when handling large-scale
data. The core of steerable visualization is to steer the computa-
tional efforts to the regions of interest [62]. In FSLDiagnotor, since
recommending shots may take a long time, users first identify the
regions that lack shots and then steer more computational efforts
to recommend shots in those regions. Such steerable shot selection
supports the exploration tasks where only a small subset of samples
are of interest, such as finding diverse and well-performing learners
from a large collection to build an ensemble model.
Providing semantic interactions. In many sensemaking pro-
cesses, users need to adjust the adopted analytical model to
form hypotheses and derive conclusions. Most existing interaction
techniques rely on users’ expertise to adjust analytical models,
such as modifying parameters and adding constraints. This requires
users to be familiar with the working mechanism of the analytical
model and thus limits the usage of the developed visual analysis

tool/method. With semantic interactions, users can easily steer the
model without expertise in it. Traditional interactions are well
studied and several taxonomies are built [63], [64]. However,
semantic interaction research is quite new and more work is needed
to form a taxonomy. In FSLDiagnotor, we provide a few concrete
examples of semantic interactions. We hope these examples can
help inspire more research in this direction and build a solid
taxonomy for semantic interactions.

9 CONCLUSION

We have presented a visual analysis tool, FSLDiagnotor, to assist
in visually diagnosing an ensemble few-shot classifier for better
performance. FSLDiagnotor integrates the sparse subset selection
method with an enhanced matrix visualization and a scatterplot to
understand the inner workings of the base learners and the coverage
of the shots. With such a comprehensive understanding, users can
build a better ensemble few-shot learning model by interactively
and efficiently improving the selection of base learners and shots.
A quantitative evaluation demonstrates the effectiveness of the
developed subset selection method in selecting appropriate base
learners and enhancing the quality of the shots. Two case studies are
conducted to demonstrate the usefulness of our tool in diagnosing
the few-shot classifier and improving its performance.
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