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Fig. 1: Based on user exploration, our method dynamically selects the color range and assigns colors to classes within the range,
which ensures high discriminability and harmony at each level and maintains consistency across different levels.

Abstract—Assigning discriminable and harmonic colors to samples according to their class labels and spatial distribution can generate
attractive visualizations and facilitate data exploration. However, as the number of classes increases, it is challenging to generate a
high-quality color assignment result that accommodates all classes simultaneously. A practical solution is to organize classes into a
hierarchy and then dynamically assign colors during exploration. However, existing color assignment methods fall short in generating
high-quality color assignment results and dynamically aligning them with hierarchical structures. To address this issue, we develop a
dynamic color assignment method for hierarchical data, which is formulated as a multi-objective optimization problem. This method
simultaneously considers color discriminability, color harmony, and spatial distribution at each hierarchical level. By using the colors of
parent classes to guide the color assignment of their child classes, our method further promotes both consistency and clarity across
hierarchical levels. We demonstrate the effectiveness of our method in generating dynamic color assignment results with quantitative
experiments and a user study.

Index Terms—Color assignment, Hierarchical Visualization, Discriminability, Harmony.

1 INTRODUCTION

Assigning colors to samples according to their class labels and spa-
tial distribution is a common practice in data analysis [35, 70, 72]. A
high-quality color assignment should be discriminable and harmonic
to ensure clarity and attractiveness in visualizations [20, 34]. However,
as the number of classes increases, it is challenging to select a large
number of colors that are easily distinguishable from each other but also
harmonize together [17, 56]. A practical solution is to organize classes
into a hierarchical structure and then dynamically assign consistent
colors across hierarchical levels. This solution not only enhances scala-
bility by reducing the requirement for a large number of distinct colors
in a static visualization, but also alleviates cognitive load during data
exploration. However, existing color assignment methods do not fully
support this solution. Some methods generate color assignment results
independently for each hierarchical level, which cannot maintain color
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consistency across levels [17, 36]. This will disrupt the user’s mental
map during exploration. Other methods apply strict color constraints to
achieve consistency but sacrifice discriminability and harmony at each
level [19, 55]. These limitations highlight the need for a dynamic color
assignment method that is capable of maintaining color discriminability
and harmony at each level and ensures consistency across different
levels during exploration.

To determine the design requirements for developing such a dy-
namic color assignment method, we first conduct interviews with six
experts specializing in Information Design in a School of Arts. The
findings indicate that the most important goal is to ensure discriminabil-
ity, which facilitates identifying class labels of data samples. Following
this, harmony is identified as the second most important factor, crit-
ical to producing visually attractive results that engage users. They
also point out that considering spatial distribution can further improve
discriminability and harmony and thus facilitate data analysis. For
example, class boundaries can be made clearer by increasing discrim-
inability between adjacent classes [36]. Accordingly, we formulate
the color assignment as a multi-objective optimization problem with
suggested priorities among these objectives [39], and apply the most
advanced theories to quantify each objective. Next, to solve this com-
plex optimization problem, we employ simulated annealing for its high
flexibility in handling multiple objectives, and combine it with the
continuation method to sequentially incorporate discriminability, har-
mony, and spatial distribution during the optimization process. This
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accelerates convergence to a better solution by guiding the optimization
process towards more promising regions in the solution space [2]. To
generate dynamic color assignment results based on user exploration
and align them with the hierarchical structures within datasets, the col-
ors of the parent classes are used to guide the color assignment of their
child classes. This is achieved by dynamically selecting appropriate
color ranges for child classes based on the colors of their parent classes,
and then optimizing the color assignment result within the selected
color range. As shown in Fig. 1, our method achieves color consistency
across levels in hierarchical grid visualizations.

Quantitative experiments show that compared to state-of-the-art
methods, our method performs best in ensuring discriminability and
aligning with hierarchical structures, while still offering comparable
levels of harmony. A user study with 20 experts further confirms that
our method generates high-quality color assignment results that are
closely aligned with user preference.

The main contributions of our work include:
• A color assignment method that achieves better discriminability

and harmony.
• A dynamic color range selection method in which the colors of the

parent classes guide the color assignment of their child classes.
• An open-source implementation of the proposed color as-

signment method in both C++ and JavaScript, available at
https://github.com/thu-vis/Dynamic-Color.

2 RELATED WORK

Existing color assignment methods can be classified into two categories
based on how they organize classes in a dataset: flat color assignment
and hierarchical color assignment.

Flat color assignment methods assign colors to all classes without
considering their hierarchical relationships. In flat color assignment,
ensuring discriminability between colors of different classes is a funda-
mental requirement and consistently draws research attention over the
years [22,41,43,57,76]. As a pioneering study, Healey [22] proposed a
rule-based method to select discriminable colors on the hue wheel that
maximize perceptual differences and name differences. Later studies
improve discriminability by incorporating more advanced theory in
quantifying perceptual differences and/or name differences [17, 17, 51].
For example, Fang et al. [17] calculated perceptual differences using
CIEDE2000 [52], which improves perceptual uniformity and achieves
better alignment with human perception. Setlur et al. [51] utilized the
name distance proposed by Heer and Stone [23], which includes 153
popular color names and their color-name associations. This offers a
more precise way to measure name differences.

In addition to color discriminability, it is also important to generate
harmonic and visually appealing color assignment results [11,20,25,31,
34,53,61,63,75]. For example, Cohen-Or et al. [11] introduced a color
harmonization method by aligning colors with Matsuda’s established
harmonic templates [40]. Color Crafting [53] summarizes the templates
of designer-crafted color assignment results in the color space and then
generates more color assignment results that mimic designer practices.

Color discriminability and harmony can be further improved by con-
sidering the spatial distribution of the visualized data [10,29,36,37,62].
Wang et al. [62] considered the color discriminability between neigh-
boring points and their contrasts to the background in a scatterplot. They
then employed a genetic algorithm to find the best color assignment
result from a set of pre-defined colors that maximizes discriminability.

Palettailor [36] advances this method by simultaneously adjusting and
assigning colors during the optimization process.

Although recent efforts in flat color assignment have achieved cer-
tain success in producing discriminable and harmonic colors, they
struggle in real-world scenarios where the number of classes can reach
hundreds or even thousands. To address the scalability issue in flat
color assignment methods, researchers have developed several hierar-
chical color assignment methods. Early efforts focus on generating
coherent colors for a static visualization, where all colors are visible
at the same time [15, 19, 55]. For example, Fua et al. [19] proposed a
proximity-based coloring method for hierarchical parallel coordinates.
It recursively assigns colors to child classes within a range centered
on the color of their parent class. This range becomes progressively
narrower at each level, which ensures that the colors of classes of
the same parent are more similar to each other than those of different
parents. Similarly, Tree Colors [55] divides the hue wheel into sev-
eral ranges and assigns each to different branches of a tree. As the
level increases, the hue range for each branch narrows down, while the
saturation increases. This method generates a diverse but consistent
color assignment result across the hierarchy. However, as the num-
ber of classes increases exponentially with the levels, these methods
still suffer from scalability issues regarding color discriminability. To
address this issue, later efforts adopt dynamic color assignment that
only assigns colors to visible data during exploration [59, 60]. These
methods better exploit the color space and thus improve the overall
quality of color assignment results. For example, Chameleon [59] uses
a force-based method to dynamically adjust color ranges on the hue
wheel. This method aims to keep the ranges close to their original
position while reducing overlaps between adjacent ranges. However,
the force-based method does not prevent color overlaps between child
classes of different parents. Cuttlefish [60] extends it to eliminate over-
laps by imposing hard constraints. It allows a larger shift on the hue
wheel to ensure distinct color ranges.

While these hierarchical color assignment methods succeed in main-
taining color consistency between parent classes and child classes, they
still face two issues. First, these methods do not simultaneously con-
sider discriminability, harmony, and spatial distribution to produce a
high-quality color assignment result at each level. Second, the strict
constraints between the colors of parent classes and child classes of-
ten lead to insufficient discriminability, especially among the child
classes of the same parent. In comparison, we achieve a well-balanced
integration of discriminability, harmony, and spatial distribution in
our optimization process by formulating color assignment as a multi-
objective optimization problem with suggested priorities among these
tasks. We also developed an improved color range selection method to
enhance discriminability without sacrificing color consistency across
class hierarchies. The detailed comparison between representative color
assignment methods and our method is summarized in Table 1.

3 REQUIREMENT ANALYSIS

We worked closely with six experts (E1-E6) during the development
of the dynamic color assignment method. All of them major in In-
formation Design in a School of Arts and have more than 5 years of
experience in designing colors for visualizations and/or user interfaces.
E1 is the co-author of this paper, while E2-E6 are not. We conducted
six semi-structured interviews with each expert to collect the require-
ments for dynamic color assignment. Initially, we shared the results of
existing color assignment methods (e.g. , Fig. 2) with the experts. Then,

Table 1: The comparison between several representative color assignment methods and our method.

Methods Discrimination Harmony Spatial Distribution Alignment with Hierarchy Dynamic Assignment

Palettailor [36] ✓ - ✓ - -
Color Crafting [53] ✓ ✓ - - -

Tree Colors [55] ✓ - - ✓ -
Cuttlefish [60] ✓ - - ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓
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Fig. 2: Results generated by existing color assignment methods.

they were asked to evaluate these results, highlighting both strengths
and weaknesses. They were also recommended to modify the colors to
express their preferences. Finally, we collected their advice on generat-
ing high-quality color assignment results and the factors that warrant
particular attention. Each interview lasted between 35 and 45 minutes.
In addition to these interviews, we also engaged in biweekly free-form
discussions to showcase our color assignment results and promptly
collect their feedback.

Based on the six semi-structured interviews, the biweekly discus-
sions, and the literature review, we summarized four design require-
ments for dynamic color assignment.
Ensure color discriminability. All the experts agreed that color dis-
criminability is the most important factor and should be considered
first. E1 commented that a minimum threshold of color differences is
required to quickly identify different class labels. This is also reflected
in several previous research [5, 20, 36, 54]. When examining color as-
signment results generated by existing methods, E2 and E4 pointed out
that Color Crafting [53] and Cuttlefish [60] failed to achieve good color
discriminability when the number of colors exceeded 10. As shown in
Fig. 2(a), the color assignment result generated by Cuttlefish results in
three colors that are not sufficiently distinguishable from each
other. This is because this method mainly considers the difference in
the hue channel, which limits its selection range. A better color discrim-
inability can be achieved by modifying their saturation and luminance
( vs. ). Therefore, it is necessary to simultaneously consider
differences in hue, saturation, and luminance when generating color
assignment results.
Enhance color harmony. All the experts pointed out that they would
also consider color harmony when choosing colors in their designs. In
this process, they would avoid using strongly disliked colors, such as
DarkSlateGray ( ) and SaddleBrown ( ) in Fig. 2(b). The strategy of
excluding strongly disliked color ranges has also been widely employed
in existing color assignment methods [20, 36]. When discussing how
to improve color harmony, three experts pointed out that according to
harmonic template theory [11, 40], harmonic colors usually conform to
specific geometric patterns in the color space, such as the hue wheel.
Four experts also noted that, in addition to the hue wheel, the balance
between saturation and luminance is also crucial to color harmony.
Consider spatial distribution. Our experts also highlighted the impor-
tance of considering spatial distribution in generating color assignment
results. Taking spatial distribution into account not only enhances
data analysis [29, 62] but also improves the aesthetic appeal of the
results [24, 30, 46]. E3 and E6 emphasized that the assigned colors
of two spatially adjacent classes significantly affect perception and
thus deserve careful consideration. For example, enhancing the color
discriminability between spatially adjacent classes can make the class
boundaries clearer and aid in identifying different classes. Moreover,
maintaining color harmony between adjacent classes can produce more
visually pleasing results. E5 also noted that assigning similar colors to
similar classes would facilitate data understanding and exploration.
Align with hierarchical structures. As rich hierarchies are ubiquitous
in datasets [6, 71], four experts also acknowledged that the generated
color assignment results should accurately reflect the hierarchical struc-
tures. E1 said, “It is common practice to use similar colors to encode a

parent class and its corresponding child classes, which facilitates the
identification of hierarchical relationships and keeps the user’s mental
map throughout the zooming process.” E4 further emphasized that to
avoid misinterpretation of hierarchical relationships, the color differ-
ences between child classes of the same parent class should be smaller
than those between child classes of different parent classes.

4 DYNAMIC COLOR ASSIGNMENT

4.1 Method Overview
Driven by the identified requirements, we propose a dynamic color
assignment method that aligns well with the class hierarchy across
levels. At each level, our method simultaneously considers discrim-
inability, harmony, and spatial distribution. As shown in Fig. 3, our
method consists of two modules: color range selection and color
assignment. The color range selection module selects an appropri-
ate color range to ensure consistency across hierarchical levels, and
the color assignment module generates high-quality color assignment
results within the selected color range. Specifically, when assigning
colors for top-level classes, the color range selection module selects
the full color range that allows greater flexibility for generating color
assignment results. When users focus on a specific region for closer
examination, this module selects the appropriate color range for the
child classes based on the colors of their parent classes. This ensures
color consistency and provides a coherent exploration experience that
adapts to user interactions. Based on this exploration process, we will
first introduce how to generate high-quality color assignment results at
each level and then describe how to ensure consistency across levels
using dynamic color range selection.

4.2 Color Assignment
The expert interviews reveal that generating high-quality color assign-
ment results requires optimizing multiple goals, including discriminabil-
ity, harmony, and spatial distribution. However, due to the conflicting
nature of these goals, it is impossible to maximize all of them simulta-
neously. For example, the color assignment result with the best discrim-
inability will contain colors with extremely high luminance, leading to
lower harmony. In practice, there are multiple Pareto-optimal solutions
that cannot be enhanced in one goal without compromising another.
Existing efforts require users to adjust the weighting parameters of
different goals to explore different Pareto-optimal solutions. However,
it brings an extra burden for users to fine-tune the weighting parameters
and determine a better one. In the requirement analysis, we have identi-
fied a priority order of discriminability > harmony > spatial distribution.
Therefore, we utilized a priority-specific Pareto-optimal strategy, which
is effective in identifying the Pareto-optimal solution that satisfies the
priority order [39]. This is achieved by guaranteeing that goals with
higher priorities have higher objective values. Specifically, given a set
of colors c1,c2, . . . ,cm, the optimization problem is formulated as:

max
c1,c2,...,cm

ED +αEH +βESD,

s.t. ED ≥ EH ≥ ESD; ci ∈ C,∀i ∈ {1,2, . . . ,m}.
(1)

Here, ED, EH, and ESD represent the objective values for discrim-
inability, harmony, and spatial distribution, respectively. C is the fea-
sible color range. The weighting parameters α and β control the
trade-offs between multiple objectives, which will be automatically
determined during the optimization process.

4.2.1 Color Discriminability
Following Palettailor [36], the total objective function of color discrim-
inability ED consists of two terms: perceptual difference EPD and name
difference END.
Perceptual difference. Perceptual difference quantifies the human-
perceived difference between two colors. In our implementation, we
use the CIEDE2000 formula to calculate this perceptual difference
because it is closely aligned with human perception [52]. Accordingly,
the perceptual difference is defined as:
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Fig. 3: Method overview. Given data, the color range selection module selects an appropriate range of colors. Then, the color assignment module
generates a discriminable and harmonic color assignment result within that range.

EPD = min
1≤i< j≤n

D(ci,c j)+min( min
1≤i< j≤n

D(ci,c j)−10,0), (2)

where D(ci,c j) is the perceptual difference between colors ci and c j
using the CIEDE2000 formula. The first term aims to maximize the
minimal perceptual difference among all color pairs. The second term
introduces an extra penalty when the minimal perceptual difference
falls below a threshold of 10, which is required to achieve high accuracy
in judging whether two colors are identical.
Name difference. In practice, colors that are perceptually different may
still be described using the same name. For example, these two colors

and are both commonly described as “Blue.” Such naming ambigu-
ity should be avoided since it leads to confusion when discussing colors
in visualizations. Heer and Stone [23] introduced the concept of name
difference to quantify the likelihood that two colors are described using
the same name. They represented each color with a 153-dimensional
feature vector, where each dimension corresponds to a popular color
name. Name difference is calculated by averaging the cosine distances
between all color pairs:

END =
2

m(m−1) ∑
1≤i< j≤n

(1− cos
Tci ·Tc j

∥Tci∥ · ∥Tc j∥
), (3)

where Tci and Tc j are the feature vectors of colors ci and c j.
The color discriminability is then defined as a weighted combination

of perceptual difference and name difference: ED = γ1EPD + γ2END.
Following Palettailor [36], we set γ1 = 0.1 and γ2 = 2.0, which gives
satisfactory results in practice.

4.2.2 Color Harmony
We adopt the most advanced color harmony theory developed by Lara-
Alvarez and Reyes [27]. We choose this theory because it aligns well
with human preferences and uses hue-chroma-lightness (CIELCh) color
space, which is more uniform and thus suitable for research on optimiz-
ing colors. According to this theory, a harmonic color assignment result
should follow specific patterns on both the hue wheel and the chroma-
lightness plane. Accordingly, the total objective function of color
harmony EH consists of two terms: hue harmony EHue and chroma-
lightness harmony ECL.
Hue harmony. We do not directly use the hue harmony term proposed
by Lara-Alvarez and Reyes [27] because it oversimplifies the widely-
used Matsuda’s harmonic templates [40] defined on the hue-saturation-
value (HSV) color space and directly applies them to the hue wheel
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Fig. 4: Color harmony: (a) on the hue wheel, colors that lie in the gray
region are considered harmonic; (b) on the chroma-lightness plane,
colors that follow a straight line are considered harmonic.

of the CIELCh space. The large difference between the hue wheels of
these two spaces often leads to large discrepancies in color perception
and harmony. To tackle this issue, we use Matsuda’s templates to
measure the hue harmony. Given a color assignment result, we first
compute the corresponding hue values in the HSV space and then
compare them with Matsuda’s templates. The difference between a
color assignment result and a hue template is quantified by summing
the minimal angular distances between the hue value of each color in
the color assignment result and the hue range of the template, which
can be freely rotated. Specifically, let θ1, · · · ,θm be the hue values of
colors c1, . . . ,cm in a color assignment result C, and R be the hue range
of a harmonic hue template, the hue difference between them is:

Hue_Diff(C,R) = min
α∈[0,360◦)

m

∑
i=1

∆(α +θi mod 360◦,R), (4)

where α is the rotation angel of the hue range, and ∆(θ ,R) is the
minimal angular distance between the value θ and the range R. If θ

falls within the range R, the minimal angular distance is 0. Otherwise,
it is calculated as the distance between θ and the nearest boundary of
R. The objective value of hue harmony is then defined as the negative
value of the smallest hue difference across all eight hue templates, and
it is normalized to the range [0,1] using min-max normalization.

EHue = Normalize(−min
R

Hue_Diff(C,R)). (5)



Chroma-lightness harmony. We directly used the chroma-lightness
harmony term proposed by Lara-Alvarez and Reyes [27], which en-
courages colors to follow a straight line in the chroma-lightness plane
As shown in Fig. 4(b), given a color assignment result, it first deter-
mines the corresponding maximum likelihood line that best fits the
colors in the chroma-lightness plane. Next, it calculates the deviation
of i-th color from this ideal line, denoted by MDi. As it is unnecessary
to strictly adhere to the line, we allow a deviation of 15 units on the
chroma-lightness plane, which is recommended by Liu et al. [34]. The
optimization objective is then defined as:

ELC = Normalize(−
n

∑
i=1

max(MDi −15,0)). (6)

The color harmony is then defined as the sum of hue harmony and
chroma-lightness harmony, which gives satisfactory results in practice.

4.2.3 Spatial Distribution
When applying color assignment results in visualization, discriminabil-
ity and harmony can be further enhanced by considering the spatial
distribution of the visualized data. For example, increasing the color
differences between adjacent classes can enhance the color discrim-
inability and make the boundaries clearer [29, 36], and ensuring the
harmony of color pairs between adjacent classes can generate more
visually coherent results [46, 47]. Since the concept of adjacent classes
changes with different types of visualizations, the optimization objec-
tive for data distribution is calculated by averaging the score of all
neighboring sample pairs:

ESD =
1
|X | ∑

xi∈X

1
|Ωxi |

∑
x j∈Ωxi

f (xi,x j)

d(xi,x j)
. (7)

Here, X is the set of all samples, and Ωxi is the set
of neighboring samples of sample xi in visualiza-
tion. We consider three representative types of vi-
sualization: scatterplots [69] (point-based), parallel
coordinates [36] (line-based), and grid visualiza-
tions [7, 32] (area-based). For grid visualizations,
we consider eight surrounding cells of the center

cell.For scatterplots and parallel coordinates, we use eight nearest neigh-
bors, which is consistent with grid visualizations.The score of each
sample pair is f (xi,x j)/d(xi,x j). Here, d(xi,x j) is the spatial distance
between samples xi and x j in the visualization. Therefore, a closer pair
would have more impact on the objective. f (xi,x j) is the optimization
objective for each pair. Based on the requirement analysis, we consider
two modes for this term: difference mode and similarity mode.

The difference mode favors a color pair with a larger perceptual
difference between adjacent classes. Therefore, f (xi,x j) is set as
D(c(xi),c(x j))+P(c(xi),c(x j)). The first term is the perceptual differ-
ence between the colors of xi and x j . The second term measures the pair
harmony between colors of xi and x j . We use the formula introduced in
Ou’s recent work about color pair harmony [48] to calculate this term.

The similarity mode reduces the perceptual difference between sim-
ilar classes to facilitate data exploration and understanding. In our
implementation, f (xi,x j) is defined as −D(c(xi),c(x j)) · s(xi,x j) +
P(c(xi),c(x j)), where s measures the class similarity. This similar-
ity is determined by first averaging the feature vectors within each class
to create class-level feature vectors and then calculating the similarities
between them. In the similarity mode, a larger perceptual difference
for more similar class pairs results in a higher penalty.

4.2.4 Optimization
A straightforward way to solve the optimization problem defined in
Eq. (1) is simulated annealing. It is chosen because of its flexibility to
accommodate multiple objectives and its effectiveness in escaping local
optima during the optimization process. First, we use the blue noise
sampling [12] to generate the initial color assignment result within
the default color range. This technique ensures that colors are evenly
distributed, which provides basic discriminability. At each iteration, the

algorithm adjusts the color assignment result and re-evaluates the ob-
jective value. Adjustments that improve the objective value are always
accepted, while those that reduce the objective value are accepted with a
progressively decreasing probability over time. However, the simulated
annealing algorithm suffers from slow convergence due to the low ac-
ceptance rate that comes with the original highly non-convex problem.
To accelerate convergence, we combine it with the continuation method.
Starting from solely optimizing discriminability, it sequentially incor-
porates harmony and spatial distribution. Each solution to the previous
problem serves as a starting point for the optimization of the subsequent
problem. By guiding the optimization process towards more promising
regions in the solution space, this method achieves higher acceptance
rates and faster convergence [2]. The experimental result shows that
our method can generate color assignment results for 30 classes in 1
second, which well supports real-time interaction for users navigating
through hierarchical visualizations (see the supplemental material for
more details). When incorporating a new optimization goal in each
stage of the continuation method, we dynamically set its weighting
parameter using loss-balanced task weighting [33,68]. The basic idea is
to ensure that different goals are optimized in a similar progress. Thus,
the weighting parameter of the goal with less progress will be increased
so that it can be further improved in subsequent iterations. Specifically,
in each stage, the weighting parameter of the newly incorporated goal
is set as the ratio between the current objective value and the possibly
maximal value. After the algorithm converges, the weighting parameter
will be fixed, and the continuation method will move to the next stage.
Fig. 5 shows the incremental refinement of the color assignment results
through each phase of the continuation method. The idea of the contin-
uation method also aligns with the typical process of hand-crafted color
assignment design. Initially, users select a set of distinguishable colors
tailored to the number of classes. Next, they adjust the hue, chroma,
and lightness to improve harmony. Finally, they assign these colors
to different classes in the visualization and make slight adjustments to
refine the overall visual effects.

4.3 Color Range Selection

When generating the color assignment result for classes at the top level,
we use the default color range during the optimization process. When
generating the color assignment result for classes at the deeper level,
we select an appropriate color range based on parent classes selected
by users. The colors of their child classes will be restricted within the
selected color range. This ensures that the generated color assignment
result reflects the hierarchical structures within the data.

4.3.1 Default Color Range

Guided by expert interviews and the common practice in color assign-
ment research [13, 20, 55, 60], we set the default range for chroma and
lightness as [40,85] instead of the full range [0,100]. This excludes rel-
atively extreme colors, including dim colors with low chroma/lightness
(e.g. , ) or highly intense colors that are glaring (e.g. , ). Moreover,
some studies have pointed out that even within this range, there are still
some strongly disliked colors [49,73], such as and . To address this
issue, we further exclude the range where lightness falls within [40,75]
and hue simultaneously falls within [85◦,114◦], as previously utilized
by Gramazio et al. [20].

4.3.2 Dynamic Color Range

For each parent class, we dynamically select a sphere based on the
perceptual difference to guide the color assignment of its child classes.
We use spheres here because they allow us to ensure that the colors
under the same parent are more similar than the colors under different
parents by determining proper radii of spheres. However, when the
colors of parent classes are close to each other, the available color
range of each sphere becomes too narrow to generate high-quality color
assignment results. This issue becomes more common and more severe
when users explore deeper hierarchical levels. In practice, reusing the
color range of invisible classes after zooming in can better exploit the
color space and will not cause much confusion [59, 60]. As shown
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in Fig. 6, this can be achieved by first adjusting the centers of these
spheres and then determining their radii.
Step 1: Adjust the centers of the spheres. We use the color assignment
method introduced in Sec. 4.2 to adjust the centers of the spheres based
on the colors of parent classes. We choose it because of its effectiveness
in ensuring discriminability and harmony. However, directly applying
this method can lead to two issues. First, without a proper constraint on
the adjustment range, colors may change excessively and thus increase
the recognition burden. Second, if the chroma or lightness of the
colors of parent classes are close to the boundary of the default range
([40,85]), it leaves less space to create aesthetically pleasing colors
for child classes. To address these two issues, we impose additional
constraints during the simulated annealing process to adjust the sphere
centers. First, we ensure consistency between the initial colors and the
adjusted colors. Specifically, each adjusted color must remain closest
to its initial color. By doing so, users can better maintain their mental
map and correctly connect the initial colors with the adjusted colors.
Second, we narrow down the feasible range for chroma and lightness
from [40,85] to [45,80]. This provides more opportunities to generate
high-quality color assignment results for child classes.
Step 2: Determine the radii of the spheres. The goal of determining
the radii is to ensure that the colors within the same sphere are closer
than colors in different spheres and that the spheres with more child
classes have larger radii to maintain discriminability. Let ri and r j
denote the radii of two spheres, and di j denotes the distance between
their centers. The gap between these two spheres will be di j − ri − r j.

1
First, we ensure that the gap must exceed the radii
of both spheres, i.e. , di j − ri − r j > 1max(ri,r j).
However, during the development of our methods,
the experts pointed out that the hue plays a more
important role in the identification of parent-child
relationships, and only considering perceptual dif-
ferences can sometimes result in misunderstand-
ing. For example, in the left image, the colors are

sampled within the ranges of three spheres: green (top), blue (bottom-
left), and orange (bottom-right). Although the color on the top-right
corner ( ) is closer to the green color than the orange and the blue,
there is still a noticeable difference in its hue compared to the green
color. This potentially misleads users to perceive it as belonging to a
separate parent class, e.g. , a parent class with yellow color. To avoid
such misunderstanding, we add an additional restriction on hue in a
similar way, which ensures that the gap between two hue ranges must
exceed the length of both ranges. Second, we study how to prop-
erly determine the radius of the sphere based on the number of child
classes. We conduct an experiment to estimate the relationship be-
tween the radius and the number of child classes through blue noise
sampling [12, 74]. Specifically, given a sphere with a radius r, we

employ the widely adopted dart-throwing method [12] to sample colors
within it until no more discernible colors can be sampled. Here, a
discernible color means that the perceptual differences between it and
those sampled colors exceed a threshold of 10, which is consistent with
the threshold we used in Sec. 4.2.1. Our experimental results indicate a
roughly linear relationship between the maximal number of possible
colors n and the square of the radius: n ∝ r2. Therefore, we introduce
constraints that ri/r j =

√
ni/

√n j, where ri and r j denote the radii of
two spheres associated with two parent classes, and ni and n j denote
the number of child classes within those spheres. Finally, the radii of
the spheres are determined as the maximal radii that adhere to both
d12 − r1 − r2 > max(r1,r2) and r1/r2 =

√
n1/

√
n2.

5 EVALUATION

5.1 Quantitative Evaluation
Datasets. We evaluated the quality of different color assignment results
across 12 datasets, which have been widely used in recent visualization
research [64, 77]. Six of them (MNIST [28], Animals [14], Indian
Food [42], Isolet [18], Texture [1], Clothing [66]) are flat datasets
with a moderate number of classes, ranging from 10 to 26. These
datasets are used to evaluate different flat color assignment methods.
The remaining six datasets (Food101 [3], Flowers102 [44], Stanford
Cars [26], Caltech256 [21], NABirds [58], ImageNet1k [16]) have a
larger number of classes, ranging from 101 to 1000. These datasets
are used to evaluate different hierarchical color assignment methods.
For datasets with a pre-existing class hierarchy, such as ImageNet, we
directly used their hierarchies. For the other datasets, we applied the
commonly used hierarchical k-means method [65] to build the class
hierarchy in a top-down manner. More details of these datasets are
given in the supplemental material.

We used these datasets to create three types of visualization: scatter-
plots (point-based) [8, 64], parallel coordinates (line-based) [19], and
grid visualizations (area-based) [9, 77], which cover the primary types
of visualization techniques for data analysis. We also evaluated the
generated color assignment results on their own, i.e. , considering the
color palettes solely without integrating them into specific visualiza-
tions. When evaluating the flat color assignment methods, we assigned
colors to all classes. When evaluating hierarchical color assignment
methods, we simulated how users explore the hierarchy by randomly
choosing a subtree for expansion.
Baseline methods and our method variations. We chose four state-
of-the-art color assignment methods for comparison. Palettailor [36]
and Color Crafting [53] are two representative flat color assignment
methods. Palettailor focuses on optimizing color discrimination and
incorporates spatial distribution to improve this aspect further, while
Color Crafting ensures basic color discrimination and focuses more on
color harmony. Tree Colors [55] and Cuttlefish [60] are two represen-
tative hierarchical color assignment methods. Tree Colors is a static
method that assigns colors to all classes, while Cuttlefish is a dynamic
method that only assigns colors to visible classes during exploration.
Since Palettailor and Color Crafting are flat color assignment methods,
we extended them to support hierarchical color assignment. Palettailor
is capable of generating color assignment results within a specified hue
range. Therefore, we employed our dynamic color selection method
to select the hue ranges for child classes and then used Palettailor to
generate color assignment results within each range. Color Crafting
generates a sequence of colors with a similar hue but different lightness



Table 2: Comparison of our method with the representative color assignment methods, with the best in bold and the second best underlined. The
values in gray indicate that the colors cannot be easily distinguished.

PD: perceptual difference, ND: name difference, CL: chroma-lightness, BHDI: balanced harmony-discrimination index, SS: silhouette score, DR: distance ratio.

Methods

Flat color assignment Hierarchical color assignment

Discriminability Harmony BHDI Discriminability Harmony BHDI Alignment with hierarchy

PD ND Hue CL PD ND Hue CL SS DR

Palettailor 19.419 0.913 0.296 0.377 4.441 8.202 0.508 0.838 0.579 3.253 0.582 0.883
Color Crafting 2.549 0.261 1.000 1.000 2.777 4.176 0.243 0.997 0.998 2.898 0.642 0.930
Tree Colors 6.168 0.848 0.608 1.000 3.909 0.226 0.066 0.978 1.000 2.133 0.785 0.994
Cuttlefish 9.944 0.813 0.702 1.000 4.323 4.615 0.382 0.606 1.000 2.832 0.715 0.907

Ours-D 23.194 0.921 0.876 0.955 5.992 16.579 0.736 0.984 0.810 4.926 0.740 0.945
Ours-S 23.070 0.920 0.893 0.962 6.002 16.482 0.699 0.985 0.927 4.958 0.740 0.946

levels. We first chose colors with different hues for the classes at the top
level. Subsequently, we estimated the lightness range for child classes
and used Color Crafting to generate color assignment results for each
child class within these specified lightness ranges.

We compared these methods with two modes of our method. Ours-
D is the difference mode, which increases the perceptual difference
between colors of spatially adjacent classes. Ours-S is the similar-
ity mode, which reduces the perceptual difference between colors of
similar classes.
Evaluation criteria. We used seven measures to evaluate the quality of
color assignment results from three perspectives: discriminability, har-
mony, and alignment with hierarchical structures. Discriminability is
evaluated using perceptual difference (PD) and name difference (ND),
which have been introduced in Sec. 4.2.1. Harmony is measured using
hue harmony (Hue) and chroma-lightness harmony (CL), which have
been introduced in Sec. 4.2.2. While discriminability and harmony are
both crucial, they often conflict with each other. For example, using
identical colors maximizes harmony, but minimizes discriminability.
To address this, we design a new measure, the balanced harmony-
discrimination index (BHDI), to combine these four measures and give
a more comprehensive one. Specifically, we follow the hyperparameters
we set in Sec. 4 to combine them, i.e. , 0.1×PD+2.0×ND+Hue+CL.
Alignment with hierarchical structures is evaluated using silhouette
score (SS) and distance ratio (DR), which are not used in our optimiza-
tion process. SS [50] measures the compactness and separability of
colors among child classes. A higher value indicates that child classes
of the same parent class have more similar colors, and those of different
parent classes have more distinct colors. DR quantifies color similarity
between child classes and their parent classes. It calculates the color
distance from a child class to the closest class at the parent level and
compares it to the distance to its actual parent class. A ratio closer
to 1 indicates a better alignment between child and parent classes. A
more thorough comparison with additional measures is available in the
supplemental material.
Results. Table 2 presents the comparison results between the baseline
methods and our methods. From the flat color assignment results, it
can be seen that our methods perform best in terms of discriminability.
In particular, our methods achieve a perceptual difference of 23, which
significantly exceeds the threshold of 10 for high accuracy in color
discrimination [5]. In terms of harmony, our methods rank second in
hue harmony, with only Color Crafting ahead. However, it should be
noted that Color Crafting’s high hue harmony comes at the sacrifice
of discriminability, which is evidenced by its worst discriminability
(2.549 in perceptual difference and 0.261 in name difference) and the
visualization results (e.g. , colors in Fig. 7(b)). Our methods fall
behind in terms of chroma-lightness harmony compared to Color Craft-
ing, Tree Colors, and Cuttlefish. The main reason is that these methods
apply either a fixed template or a strict constraint to determine the
chroma and lightness of colors. This results in worse discriminability,
such as the colors in Fig. 7(c) and the colors in Fig. 7(d). In-
stead, our methods sacrifice a little chroma-lightness harmony to allow
greater variation to enhance discriminability. Despite this, our methods
perform best in terms of BHDI and produce visually appealing results
(Figs. 7(e) and (f)). These demonstrate the strength of our methods in

(a) Palettailor (b) Color Crafting (c) Tree Colors

(d) Cuttlefish (e) Ours-D (f) Ours-S

Fig. 7: Flat color assignment results generated by different methods.

balancing discriminability and harmony, which are both indispensable
in visualization. This is further confirmed by the user study results in
Sec. 5.2.1 as our methods are highly favored by the experts.

For hierarchical color assignment, the results on discriminability,
harmony, and BHDI are similar to those for flat color assignment. There-
fore, we focus on how well these methods align with hierarchical struc-
tures. As shown in Table 2, our methods rank second among all meth-
ods, slightly behind Tree Colors. The primary reason for Tree Colors’
high performance is that it enforces the colors of child classes within
a small range around the colors of parent classes, which achieves a
tight alignment with hierarchical structures. However, this results in ex-
tremely poor discriminability between colors, which is even worse than
Color Crafting (0.226 vs. 4.176 in perceptual difference and 0.066 vs.
0.243 in name difference). The visualization results in Fig. 8E also show
that Tree Colors generates almost identical colors for five child classes
of the same parent ( ). In contrast, our methods generate colors
that are both discriminable and clearly identifiable as belonging to the
same parent class for these five child classes ( in Fig. 8A).

5.2 User Study

We also conducted a user study to capture human preferences for
different color assignment methods.

5.2.1 User Study Design

Methods. In our user study, we used the same four baseline methods
as in our qualitative evaluation. As shown in Table 2, only minor
differences are observed between the difference mode (Ours-D) and the
similarity mode (Ours-S). This prompts us to choose one to simplify
the comparison process for experts. We chose the similarity mode
because it shows slightly better performance in BHDI and alignment
with hierarchical structures, and this mode is more suitable for data
analysis in practice [67].



Fig. 8: Hierarchical color assignment results generated by different methods and displayed in different visualization types.

Fig. 9: The interface of the user study.

Experts. We recruited 20 experts for our study, including 12 males and
8 females. Nine of them specialize in color design, and the remaining
eleven are experts in information visualization. All of them confirmed
their expertise in color design and data visualization. None of them
reported any color deficiency. Upon completion, each expert was
rewarded with a $30 gift card.
Study procedure. The user study consists of three tasks that require
the experts to rank the color assignment results based on discriminabil-
ity, harmony, and alignment with hierarchical structures, respectively.
Before each task, we provided a brief overview of these concepts. Fol-
lowing this, experts were required to complete 12 trials for each task.
In each trial, experts ranked the color assignment results on a web-
based interface (Fig. 9). They could take a brief break after completing
each task. Upon completing all trials, they were asked to complete
a questionnaire, which collected their personal information and de-
tailed feedback on how they evaluated the five color assignment results
depicted in Fig. 9. Each study lasted 40-60 minutes.
Conditions and design. Similar to the quantitative evaluation, we
included palettes, scatterplots, parallel coordinates, and grid visualiza-
tions in our user study to cover different types of visualization. This
diverse inclusion ensures that our evaluation results are more robust
and reliable. However, to avoid overburdening experts, we did not
include all the 12 datasets used in the quantitative evaluation, as doing
so would result in a total of 144 trials (3 tasks × 4 visualizations ×
12 datasets). This would require an excessive amount of time from
our experts. Instead, we considered three representative scenarios in

data exploration: 1) examining a higher hierarchical level with a bal-
anced subclass distribution (high-bal), which is the most common case
in data exploration; 2) examining a higher hierarchical level with an
imbalanced subclass distribution (high-imbal), which sometimes hap-
pens during exploration; 3) examining a lower hierarchical level (low),
where the available color range will become much narrower. This
makes our findings more convincing and applicable to a wide range of
data exploration scenarios. Consequently, each expert went through 36
trials (3 tasks × 4 visualizations × 3 scenarios).

5.2.2 Result Analysis
Overall comparison. First, we computed the average rank for each
color assignment method. If an expert ranked two methods equally,
their ranks were set as their average rank. For example, if the ranking is
A=B>C=D=E, the ranks of A and B will be (1+2)/2=1.5, and the ranks
of C, D, and E will be (3+4+5)/3=4. Next, we conducted Friedman tests
and pairwise Wilcoxon signed-rank tests to compare the ranks of differ-
ent methods. The statistical test results and the box plots are presented
in Fig. 10. The Friedman test results indicate significant differences
among the methods in discriminability (χ2(4) = 42.68, p < 0.0001),
harmony (χ2(4) = 41.96, p < 0.0001), and alignment with hierarchical
structures (χ2(4) = 45.70, p < 0.0001). Therefore, we focus on pair-
wise comparisons in subsequent analysis. Regarding discriminability,
our method achieves an average rank of 1.64, which is significantly
better than all the baseline methods. Regarding harmony, our method
achieves a comparable performance with Cuttlefish (an average rank of
2.04 vs. 2.19), and they are both significantly better than the other three
methods. Regarding the alignment with hierarchical structures, our
method ranks highest on average (1.70), which is significantly better
than other methods. These findings are consistent with the ones in
the quantitative evaluation that our method is effective in balancing
discriminability and harmony, while also maintaining better alignment
with hierarchical structures. Further details of the distribution of the
ranks are summarized in the supplemental material.
Detailed comparison on different scenarios. We further investigate
whether the ranking results vary across different exploration scenar-
ios. As shown in Fig. 10, the average ranks of different methods do
not significantly change between the scenario of exploring a higher
hierarchical level with a balanced subclass distribution and that with
an imbalanced class distribution (high-bal vs. high-imbal). However,
in the exploration of lower hierarchical levels, both Color Crafting
and Tree Colors exhibit a notable drop in discriminability. This is
because, at lower levels, they produce color assignment results within a
narrower color range. Moreover, the experts ranked these two methods
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lower in harmony. This is because they believed harmony is built on
contrast, colors that are similar but not identical are perceived as more
harmonic. In contrast, both our method and Cuttlefish maintain good
performance in discriminability and harmony, which is achieved by
dynamically expanding the color range in lower levels. Notably, our
method achieves better alignment with hierarchical structure compared
to Cuttlefish because of the improved dynamic color range selection
method. This improvement ensures a closer correspondence between
the colors assigned to child classes and their respective parent classes,
thereby improving overall hierarchical coherence.

6 EXPERT FEEDBACK AND DISCUSSION

After the user study, we summarized expert feedback on their evaluation
of different color assignment methods in terms of discriminability,
harmony, and alignment with hierarchical structures. To gain deeper
insights, we conducted semi-structured interviews with eight experts. In
each interview, we first presented their ranking results and encouraged
them to explain their choices, especially those where their opinions
differed from the majority. After going through all the results, we held
an open discussion to collect more feedback on our color assignment
method and explore potential opportunities for enhancement. The
duration of each discussion was around 50-60 minutes.
Discriminability. When discussing how they compare different color
assignment results in terms of discriminability, many experts high-
lighted the important role of hue and saturation. This led to a higher
ranking for options C/D/E compared to A/B in Fig. 9. Two experts
also pointed out that to develop a color assignment method for a wide
audience, it is necessary to consider users with color vision deficiency
(CVD). Given the flexibility of our method, we are optimistic about its
potential to generate CVD-friendly color assignment results. The key
lies in selecting an appropriate color range and refining the calculation
of color discriminability. Some research on CVD models [4, 38] can be
integrated to achieve this goal. In addition, Stone et al. [54] explored
the impact of mark size on discriminability. A promising research direc-
tion involves incorporating the findings into the optimization process to
tailor color assignment results for various visualization types, including
scatterplots, line charts, and grid visualizations.
Harmony. Many experts pointed out that they would first rank color
assignment results with extremely high saturation or luminance, such
as Fig. 8F and Fig. 9C, as the least harmonic. They also noted that
harmony decreased when colors were too similar to be easily distin-
guished [48]. This explains the lower ranking of Color Crafting and
Tree Colors in lower hierarchical levels. Although our method and

Cuttlefish scored lower in the harmony metric, they were still pre-
ferred by experts. Moreover, several experts pointed out that personal
preferences and cultural differences also affect the perception of color
harmony [45,49,73]. For example, one expert favored warm colors with
low saturation, such as the results generated by Cuttlefish (Fig. 8H).
Our methods can integrate these individual and cultural preferences by
modifying the color ranges or including customized harmonic patterns.
However, it is difficult for end users to accurately describe their pref-
erences in terms of color ranges. It remains an opportunity to explore
how to collect user feedback (like/dislike) and model user preferences.
Consistency with hierarchical structures. The experts noted that
when comparing different methods, they focused more on the percep-
tual difference between the colors of parent classes and child classes.
A smaller difference indicates a clearer parent-child relationship. They
also highlighted the critical role of hue difference between different
parent classes, which would significantly facilitate the accurate identi-
fication of parent-child relationships. This justifies our additional em-
phasis on the hue channel in the dynamic color range selection process.
Moreover, some experts prioritized discriminability between the colors
of parent classes and would tolerate relatively smaller discriminability
between the colors of child classes of the same parent. Other experts
held the opposite view and believed that maintaining discriminability
between the colors of child classes was more important. Therefore, it is
necessary to provide a customizable trade-off between these two goals.
Currently, our method ensures that the gap between two color ranges
for the child classes of different parents should be greater than the radii
of each color range. Users can modify this requirement to achieve a
smaller or larger gap to adapt to their needs.

7 CONCLUSION

We develop a dynamic color assignment method that simultaneously
considers discriminability, harmony, and spatial distribution. It also
dynamically assigns colors based on user exploration and aligns them
with hierarchical structures. Our method starts by generating a discrim-
inable and harmonic color assignment result for top-level classes within
the full color range. When users zoom in on a region for detailed analy-
sis, our method selects an appropriate color range for the child classes
based on the colors of the selected parent classes. Subsequently, our
method generates the color assignment result for child classes within
the selected color ranges and ensures discriminability and harmony.
The effectiveness of our method is demonstrated through a quantitative
evaluation and a user study, which highlights its capability in generating
high-quality dynamic color assignment results.



SUPPLEMENTAL MATERIALS

All supplemental materials are available on OSF at https://osf.io/
e4b5u/?view_only=68cc67c194c443b498bd2545ef551faa, re-
leased under a CC BY 4.0 license. In particular, they include (1)
dataset information, (2) the running time of our color assignment meth-
ods, (3) additional color assignment results, (4) additional quantitative
evaluation results, (5) additional user study results, and (6) the video.
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