
Supplemental Material: Dynamic Color Assignment
for Hierarchical Data

1 DATASETS

Tab. S1 presents the detailed information of 12 datasets used in our
qualitative evaluation, including the number of classes and the number
of samples. The first six datasets are flat datasets with a moderate range
of classes, which are used to evaluate flat color assignment methods.
The remaining six datasets have a larger number of classes, which are
used to evaluate hierarchical color assignment methods.

Table S1: The information of the datasets.

Dataset # Classes # Samples

MNIST [11] 10 70,000
Animals [4] 10 26,179
Indian Food [13] 13 4,770
Clothing [21] 14 37,497
Texture [1] 15 5,500
Isolet [7] 26 7,797
Food101 [2] 101 101,000
Flowers102 [14] 102 8,189
Stanford Cars [10] 196 16,185
Caltech256 [9] 257 30,607
Nabirds [18] 555 48,000
ImageNet1k [5] 1,000 1,281,167

2 RUNNING TIME

We evaluated the running time of our method on a Linux server with
an Intel i9-13900K CPU (3.0 GHz). The running time consists of
two parts: 1) time for computing nearest neighbors for the spatial
distribution term and 2) time for optimizing color assignment results
using simulated annealing. The first part depends on the dataset size.
As shown in Table S2, it takes less than 0.2 seconds to compute the
nearest neighbors for 100,000 samples in a scatterplot. The second
part is independent of the dataset size but depends on the number of
classes. As shown in Table S3, our algorithm can assign colors to 20
classes within 0.4 seconds and to 30 classes within 1 second. Previous
research has shown that a color palette with 26 colors already exhibits
poor discriminability [6]. Therefore, our method well supports real-
time interaction for users navigating through hierarchical visualizations.
Table S3 further details the processing times for different stages. Most
of the time is spent on the first stage to enhance discriminability, with
subsequent optimization stages achieving rapid convergence.

3 ADDITIONAL COLOR ASSIGNMENT RESULTS

In this section, we offer four additional examples that compare hierar-
chical color assignment results, each corresponding to one of the four
visualization types.
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Table S2: Average running time (in seconds) of computing nearest
neighbors in scatterplots with different numbers of samples.

#Sample 1,000 10,000 100,000

Time 0.002 0.014 0.171

Table S3: Average running time (in seconds) of optimizing color as-
signment results in each stage.

Stages 10 classes 20 classes 30 classes

Total 0.063 0.352 0.968

Discriminability 0.039 0.239 0.655
Harmony 0.018 0.098 0.258

Spatial Distribution 0.006 0.015 0.055

Palette. The generation of the palette does not incorporate the spa-
tial distribution information of the data. As users explore, the colors
corresponding to child classes are generated solely based on the col-
ors of their parent classes. Fig. S1 presents an example where users
explore a lower hierarchical level. The colors on the left side of the
dividing line are the colors of the parent classes, while the colors on the
right side are the colors of their child classes. It can be observed that
Color Crafting [16] and Tree Colors [17] produce many similar colors,
resulting in poor discriminability. Meanwhile, Palettailor [12] and Cut-
tlefish [19] perform poorly in the alignment with hierarchy, making it
difficult for users to associate parent and child classes. Our approach
improves discriminability and harmony while ensuring consistency,
yielding relatively satisfactory results.
Scatterplot. We adopt the approach proposed by Xiang et al. [20]
to generate hierarchical scatterplots. It employs incremental t-SNE
to dynamically generate scatterplots for each layer. We then apply
the color assignment results generated by different methods. Fig. S2
presents an example where users explore a higher hierarchical level.
It can be observed that almost all baseline methods do not perform
sufficiently well in discriminability, with colors that are difficult to
distinguish. While Palettailor performs relatively well, there are still
some colors that cannot be differentiated. In contrast, our method
ensures discriminability and improves color harmony.
Parallel coordinates. We adopt the approach proposed by Fua et
al. [8] to generate hierarchical parallel coordinates. Fig. S3 presents
an example where users explore a higher hierarchical level. The high
quantity and complexity of the lines demand high discriminability for
quality color assignment. Our method is relatively well-suited to adapt
to such situations.
Grid visualization. We utilized the approach proposed by Chen [3]
to generate hierarchical grid visualizations. Compared to scatterplots
and parallel coordinates, grid visualizations using surfaces can more
easily display colors. Fig. S4 presents an example where users explore
a higher hierarchical level. It can be seen that our method exhibits
relatively high discriminability and harmony. In comparison, the result
of Cuttlefish [19] is harmonic but contains very similar colors.



(a) Palettailor

(d) Cuttlefish(c) Tree Colors

(b) Color Crafting

(e) Ours-D/Ours-S

Fig. S1: An example of exploring a lowerw hierarchical level in the
form of the color palette. Since spatial distribution is not considered,
Ours-S and Ours-D generate the same result.

(a) Palettailor

(d) Cuttlefish(c) Tree Colors

(b) Color Crafting

(e) Ours-D (e) Ours-S

Fig. S2: An example of exploring a higher hierarchical level in the
form of scatterplot.
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(a) Palettailor

(d) Cuttlefish(c) Tree Colors

(b) Color Crafting

(e) Ours-D (e) Ours-S

Fig. S3: An example of exploring a higher hierarchical level in the
form of parallel coordinates.

Fig. S4: An example of exploring a higher hierarchical level in the
form of grid visualization.



Table S4: Comparison of our method with the representative color assignment methods for flat color assignment, with the best in bold and the
second best underlined. The values in gray indicate that the colors cannot be easily distinguished.

PD: perceptual difference, ND: name difference, ACIE76: average CIE76 color difference, MCIE76: minimal CIE76 color difference,
CL: chroma-lightness, BHDI: balanced harmony-discrimination index.

Methods

Flat color assignment

Discriminability Harmony BHDI
PD ND ACIE76 MCIE76 Hue CL

Palettailor 19.419 0.913 96.696 30.104 0.296 0.377 4.441
Color Crafting 2.549 0.261 25.253 4.548 1.000 1.000 2.777
Tree Colors 6.168 0.848 75.599 11.903 0.608 1.000 3.909
Cuttlefish 9.944 0.813 54.549 18.005 0.702 1.000 4.323

Ours-D 23.194 0.921 79.968 30.594 0.876 0.955 5.992
Ours-S 23.070 0.920 79.742 30.495 0.893 0.962 6.002

Table S5: Comparison of our method with the representative color assignment methods for hierarchical color assignment, with the best in bold
and the second best underlined. The values in gray indicate that the colors cannot be easily distinguished.

PD: perceptual difference, ND: name difference, ACIE76: average CIE76 color difference, MCIE76: minimal CIE76 color difference,
CL: chroma-lightness, BHDI: balanced harmony-discrimination index, SS: silhouette score, DR: distance ratio,
RoMM: ratio of the maximum color distance between siblings to the minimum color distance between cousins.

Methods

Hierarchical color assignment

Discriminability Harmony BHDI Alignment with hierarchy

PD ND ACIE76 MCIE76 Hue CL SS DR RoMM

Palettailor 8.202 0.508 51.697 16.102 0.838 0.579 3.253 0.582 0.883 6.471×105

Color Crafting 4.176 0.243 23.015 8.143 0.997 0.998 2.898 0.642 0.930 3.038
Tree Colors 0.226 0.066 6.959 0.379 0.978 1.000 2.133 0.785 0.994 4.370×103

Cuttlefish 4.615 0.382 25.248 8.497 0.606 1.000 2.832 0.715 0.907 0.972

Ours-D 16.579 0.736 53.552 23.862 0.984 0.810 4.926 0.740 0.945 0.527
Ours-S 16.482 0.699 48.635 20.852 0.985 0.927 4.958 0.740 0.946 0.538

4 QUANTITATIVE EVALUATION WITH ADDITIONAL MEASURES

In this section, we present the comparison results using three additional
measures: average CIE76 color difference (ACIE76), minimal CIE76
color difference (MCIE76), and the ratio of the maximum color dis-
tance between siblings to the minimum color distance between cousins
(RoMM). ACIE76 and MCIE76 are commonly used measures for color
discriminability [15] and are not used in our optimization process.
RoMM evaluates the alignment with hierarchy, where a lower RoMM
indicates that the colors under the same parents have more similar
colors.

Tables S4 and S5 provide a comparative analysis of the flat and
hierarchical color assignment, respectively. In the flat color assign-
ment, Ours-D performs the best in MCIE76 and ranks second to Pale-
tailor [12] in ACIE76. However, it should be noted that Paletailor
achieves its high ACIE76 score by using a much broader chroma range
([0,100] vs. ours [40,85]). This broader range results in the inclusion
of extreme colors, such as dim colors with low chroma (see colors

in Fig S4(a)). Consequently, Paletailor records the lowest harmony
scores, with 0.296 in Hue and 0.377 in CL, indicating a significant com-
promise in color harmony. In the hierarchical color assignment, Ours-D
performs the best in all three additional measures. Cuttlefish [19] also
shows better performance in RoMM by maintaining hue consistency
between colors of the same parent. However, it still performs worse
than our methods, which employ constraints in dynamic range selec-
tion to ensure color compactness under the same parent and sufficient
separation across different parents. In addition, Cuttlefish may still
produce similar colors when there are too many subclasses due to the
limited use of lightness and chroma (e.g. , colors in Fig S4(d)).
This limitation is also evidenced by its lower scores in discriminability
(4.615 in PD and 8.497 in MCIE76).

5 ADDITIONAL RESULTS OF USER STUDY

In this section, we provide additional results from the user study, in-
cluding the distribution of the ranks and frequency of the methods that
are ranked first. Similar conclusions to those obtained in the paper can
be drawn based on these graphical results.

Distribution of the ranks. As shown in Fig. S5, it can be seen that,
overall, our method performs the best, followed by Cuttlefish [19].
This indicates the advantage of dynamic methods in handling data un-
der hierarchy. Fig. S6 shows the performance on the discriminability
task, where our method outperforms all other methods, with Palettai-
lor [12] coming next as it focuses on optimizing distinctiveness. Fig. S7
demonstrates the performance on the harmony task, where our method
approaches Cuttlefish and outperforms other methods. Fig. S8 illus-
trates the performance on the alignment with the hierarchy task, where
our method outperforms all other methods.
Ratios of methods that are ranked highest. In addition, we analyze
which methods users most often rank as their first choice across various
trials. The results are summarized in Figs. S9 to S12. It is observed
that users generally prefer our method and rank it as their first choice.
Regarding harmony, Cuttlefish, and our method are comparable, which
is consistent with the findings we draw earlier. Specifically, as illus-
trated in Fig. S12, our method demonstrates excellent alignment with
the hierarchy even at the lower level.
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Fig. S5: The distribution of the ranks of different methods on all the
three tasks
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Fig. S6: The distribution of the ranks of different methods on the task
of discriminability.
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Fig. S7: The distribution of the ranks of different methods on the task
of harmony.
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Fig. S8: The distribution of the ranks of different methods on the task
of alignment with hierarchy.
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Fig. S9: The frequency of the methods that are ranked first under all the three exploration scenarios.
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Fig. S10: The frequency of the methods that are ranked first under the exploration scenario that users examine a higher hierarchical level with a
balanced subclass distribution.
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Fig. S11: The frequency of the methods that are ranked first under the exploration scenario that users examine a higher hierarchical level with an
imbalanced subclass distribution.
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Fig. S12: The frequency of the methods that are ranked first under the exploration scenario that users examine a lower hierarchical level, where
the available color range will become much narrower.
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