
Enhancing Single-Frame Supervision for
Better Temporal Action Localization

Changjian Chen, Jiashu Chen, Weikai Yang, Haoze Wang, Johannes Knittel,
Xibin Zhao, Steffen Koch, Thomas Ertl, and Shixia Liu

(a) (b)

Takeoff phases

E

D

C

A

ct
io

ns

Ca
te

go
ry

 la
be

l
U

nc
er

ta
in

ty

A

Action

Unannotated frames

Annotated frames Unaligned frames

Aligned frames
BAction

Action
sub-cluster

Category

Fig. 1: ActLocalizer: (a) a list to show action categories and their uncertainty; (b) a storyline to show actions and their alignments.

Abstract—Temporal action localization aims to identify the boundaries and categories of actions in videos, such as scoring a goal in a
football match. Single-frame supervision has emerged as a labor-efficient way to train action localizers as it requires only one annotated
frame per action. However, it often suffers from poor performance due to the lack of precise boundary annotations. To address this
issue, we propose a visual analysis method that aligns similar actions and then propagates a few user-provided annotations (e.g. ,
boundaries, category labels) to similar actions via the generated alignments. Our method models the alignment between actions as a
heaviest path problem and the annotation propagation as a quadratic optimization problem. As the automatically generated alignments
may not accurately match the associated actions and could produce inaccurate localization results, we develop a storyline visualization
to explain the localization results of actions and their alignments. This visualization facilitates users in correcting wrong localization
results and misalignments. The corrections are then used to improve the localization results of other actions. The effectiveness of our
method in improving localization performance is demonstrated through quantitative evaluation and a case study.

Index Terms—Temporal action localization, single-frame supervision, storyline visualization

1 INTRODUCTION

Temporal actions refer to human motions or human-object interactions
that occur in a video, such as scoring a goal in a football match and

• C. Chen is with the College of Computer Science and Electronic
Engineering, Hunan University. E-mail: changjianchen@hnu.edu.cn.

• J. Chen, W. Yang, H. Wang, X. Zhao, and S. Liu are with the School of
Software, BNRist, Tsinghua University. S. Liu is the corresponding author.
E-mail: {{cjs22, yangwk21, wang-hz22}@mails., zxb,
shixia@}tsinghua.edu.cn.

• J. Knittel, S. Koch, and T. Ertl are with University of Stuttgart. E-mail:
johannes.knittel, steffen.koch, Thomas.Ertl@vis.uni-stuttgart.de.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

throwing a javelin [45, 56]. Detecting and analyzing temporal actions
is important for a variety of applications, ranging from security surveil-
lance to video moderation and home care [37, 58, 65]. As a result,
temporal action localization has emerged as a significant research topic
in computer vision [56]. It determines the boundaries and categories of
actions in videos. In recent years, deep learning models [33, 63] have
significantly improved the performance of temporal action localization
by exploiting a large number of fully-annotated videos. However, it is
time-consuming to obtain these annotations since annotators need to
seek back and forth through the videos to identify the precise boundaries
of actions. To address this issue, single-frame-oriented temporal action
localization methods have been developed, which utilize single-frame
annotations to train action localizers [30,37] (Fig. 2(a)). A single-frame
annotation of an action consists of the temporal location of one single
frame (anchor frame) and its category label (Fig. 2A). Annotators can
provide such annotations by watching the video once with some extra

Weightlifting

Low performance

Train Evaluate

Weightlifting Train Evaluate

High performance

(a) Single-frame-oriented method

(b) Our method

Weightlifting

3:34

Category label

Temporal location

Single-frame
annotation

3:34

3:34

A

Propagation-based
action improvement

Corrections

Fine-tune
Improved actions Actions

Visualization

Fig. 2: The comparison between (a) the single-frame-oriented method
and (b) the proposed visual analysis method (in orange).

pauses, which largely reduces annotation costs [37]. However, the per-
formance of these methods is generally poor due to the lack of precise
boundary annotations and the presence of noisy category labels.

An effective way to boost performance is to integrate humans into the
automatic localization process. First, a few imprecise boundaries and
noisy category labels of detected actions are corrected by users. Then,
the corrections are propagated to similar actions that share common
human motions or human-object interactions to improve the localization
results. These results are used to fine-tune the localizer for better
performance. This largely saves human efforts. However, in the context
of action localization, two challenges still persist. First, as the dataset
grows in size, manually identifying imprecise boundaries and noisy
category labels becomes more challenging. Second, due to the need
to consider both frame similarities and inherent temporal relationships
between sequential video frames, propagating corrections across similar
actions presents a complex task.

To address these challenges, we develop ActLocalizer, a visual analy-
sis method to 1) help users explore the localization results of actions for
correction; 2) propagate the corrections to similar actions through the
generated alignments to improve localization performance. As shown
in Fig. 2(b), ActLocalizer first trains an initial action localizer using
the single-frame annotations to detect actions. Then a propagation-
based action improvement method is developed to improve the actions.
Specifically, similar actions are aligned together by considering both
similarities and temporal relationships between frames, which is formu-
lated as a heaviest path problem. Based on the generated alignments,
the localization results are improved by propagating the single-frame
annotations to similar actions. This is achieved by solving a quadratic
optimization problem. As the automatically generated alignments may
not accurately match the associated actions and could produce inaccu-
rate localization results, we develop a storyline visualization to explain
the actions and their alignments. Users can interactively correct mis-
alignments and wrong localization results. The corrected alignments
are incorporated into the heaviest path problem to generate better align-
ments, and the corrected localization results are propagated through the
updated alignments to obtain improved actions. Based on the improved
actions, the action localizer is fine-tuned for better performance. The
effectiveness of the propagation-based action improvement method and
the storyline is demonstrated through quantitative evaluation and a case
study. The source codes are available at: http://actlocalizer.thuvis.org/.

In summary, our contributions include:
• A visual analysis tool for iteratively improving the performance

of action localizers through minimal user corrections on action
annotations and alignments.

• A storyline visualization for exploring actions, examining align-
ments, and making necessary corrections.

• A propagation-based action improvement method that effec-
tively propagates user corrections to improve action localization
results while saving human efforts.

2 RELATED WORK

2.1 Semi-Supervised Temporal Action Localization
Semi-supervised temporal action localization methods can be classified
into two groups: boundary-oriented and single-frame-oriented methods.

Boundary-oriented methods utilize both annotated and unannotated
videos to train action localizers [24, 53]. They introduce a consistency
constraint between unannotated videos and their perturbed counterparts
to improve the robustness against perturbations. For example, Ji et
al. [24] kept the localization results unchanged for unannotated videos
when the frames were resampled or some frames were masked. Re-
cently, single-frame-oriented methods have been proposed to reduce
annotation costs [30, 37, 58]. Compared to boundary-oriented methods,
they achieve better performance with the same number of annotated
frames. Compared to boundary-oriented methods, they perform better
when utilizing the same number of annotated frames. Their training
consists of two phrases. First, an action localizer trained on the single-
frame annotations is utilized to detect actions. Second, these actions,
which may be imprecise, are used to fine-tune the action localizer.
Assuming no irrelevant background frames in videos, Li et al. [30]
identified boundaries by detecting action changes between consecutive
anchor frames. Since the assumption is not always true, this method
may mispredict a background frame as an action frame. To address this
issue, Ma et al. [37] developed SF-Net, which determined boundaries
by extending anchor frames to their temporally adjacent frames with
high prediction confidence.

Despite the capabilities of single-frame-oriented methods, they
can benefit from extra boundary annotations. Thus, we introduce a
propagation-based method that improves the localization results of any
single-frame-oriented method using these extra boundary annotations.

2.2 Interactive Annotation for Sequence Data
Interactive annotation methods for sequence data can be divided into
two groups: direct verification and iterative verification.

Direct verification methods utilize automatic algorithms to generate
annotations [11,26,43]. Users only need to validate or correct the gener-
ated annotations, greatly saving their efforts. For example, Kurzhals et
al. [26] utilized a video segmentation algorithm to partition eye-
tracking data into multiple segments and clustered them. Users can an-
notate multiple segments of a cluster in one go. However, the accuracy
of the automatically generated annotations significantly affects the an-
notation efficiency. To address this issue, iterative verification methods
have been proposed [19, 28, 51, 60]. In these methods, users annotated
sequences that were recommended by an active learning model or iden-
tified in the visualization. The annotations were then used to fine-tune
the model for better performance. This paradigm was also employed
by Lekschas et al. [28] and Yu et al. [60] for identifying sequence data
of interest and Tang et al. [51] for annotating abnormal videos.

Among these methods, the most relevant one is VideoModerator [51].
It aims to identify the videos with misinformation or offensive content.
Initially, a classifier was trained to recommend such videos, The recom-
mended videos were then analyzed and annotated in three coordinated
views. These annotations were used to fine-tune the classifier. Since
the classifier in VideoModerator cannot be utilized to detect the actions
in videos, we have developed ActLocalizer, which effectively detects
actions by combining single-frame annotations and a few user correc-
tions (e.g. , corrected boundaries). Additionally, ActLocalizer utilized a
storyline visualization to aid users in analyzing and correcting actions,
ultimately enhancing localization performance.

2.3 Video Visualization
Initial efforts on video visualization focus on visually illustrating the
main content of a video by summarizing the representative frames [13,
25, 41, 46, 49] or extracted attributes, including the motions of ob-
jects [10,14] and their trajectories [3,21,38]. Recent efforts seek to com-
bine machine learning techniques with interactive visualization for per-
forming video analysis tasks, including exploring the engagement of stu-
dents in class [61], understanding inherent structures of movies [27,36],
and analyzing presentation techniques in TED talks [55, 62].

http://actlocalizer.thuvis.org/

 User corrections
(c)

Action Improvement Action VisualizationTraining Set

Action
alignment

Single-frame annotations

Annotation
propagation

Hierarchical
clustering

(b)

Improved
actions

Alignments
Localizer

Storyline
Weightlifting

3:34

Actions

(a)

Fine-tune(e)

Unstructured Data Data Transformation VisualizationStructured
Data

(d)

Fig. 3: System overview: given videos and their single-frame annotations, (a) an action localizer is trained; (b) the action improvement module
aligns similar actions together for propagating annotations; (c) the visualization module explains the actions and their alignments; (d) users
correct misalignments and wrong localization results; (e) the corrections are utilized to fine-tune the localizer.

Orthogonal to these methods, our work focuses on improving the per-
formance of action localizers. For this purpose, we developed a story-
line visualization that enables users to easily correct wrong localization
results. These corrections are then propagated by the propagation-based
action improvement method to boost model performance.

3 REQUIREMENT ANALYSIS

We worked closely with four machine learning experts (E1–E4) to
develop ActLocalizer. None of them are the co-authors of this paper.
E1 is a postdoctoral researcher, and E2 is a Ph.D. student. They have
studied single-frame-oriented temporal action localization methods
for over four years. During their research studies, they found that
the quality of the annotations limited the performance of the models.
Therefore, they wanted to interactively correct a few wrong localization
results and propagate them to similar actions for better performance.
E3 and E4 are two Ph.D. students who applied several single-frame-
oriented methods to detect abnormal actions in surveillance videos for a
project. These methods did not perform as expected, so they wanted to
correct the localization results of some actions to enhance performance.

We distilled the following requirements from four 40-70 minute
semi-structured interviews with the experts and literature reviews.
R1 - Explore localization results and identify the wrong ones. In
practice, the experts had to examine each action individually to pinpoint
the wrong localization results, including imprecise boundaries and
noisy category labels. This becomes tedious when dealing with a large
number of actions. To make the examination more labor-efficient, they
desired an overview of the actions first. Then, they wanted to examine
the actions with imprecise boundaries and noisy labels at different
levels of detail. E2 mentioned, “I prefer grouping similar actions
together, each accompanied by a few representative frames to provide
an overview. The grouping results and the associated representative
frames allow me to quickly identify the actions with wrong localization
results that require further analysis.”
R2 - Correct wrong localization results more efficiently. Upon iden-
tifying wrong localization results, the experts required to correct them
for better performance. While the experts can correct noisy category
labels quickly, adjusting imprecise boundaries can be quite tedious. For
example, E1 said, “When refining the imprecise boundaries for one
action, I find myself frequently rewinding the video to locate the precise
boundaries, especially when they are unclear or ambiguous.” A more
labor-efficient way is to recommend several boundary candidates for
validation or refinement. Additionally, E1 suggested displaying bound-
ary candidates in the context of neighboring frames. This would reduce
the need for repeated video playback and thus save time and efforts.
R3 - Propagate the the corrected localization results to similar ac-
tions. All the experts expressed the need to minimize the number of
corrected localization results. E3 commented, “An labor-efficient way
to achieve this is to propagate a few user-corrected localization results to
similar actions.” He noted that the propagation results depended on the
alignments between actions. Existing alignment methods only consider
the similarities between the frames [8, 31] and ignore the temporal rela-
tionships between successive frames. This frequently leads to numerous
misalignments, such as aligning the upward and downward phases of

two pull-up actions. Thus, it is desired to align similar actions by con-
sidering both similarities and temporal relationships between frames.
R4 - Correct the action alignments for better propagation. Since the
alignments are generated automatically, some may not accurately match
the associated actions [18]. These misalignments result in wrong prop-
agation and subsequently degrade model performance. Therefore, the
experts wanted to examine the alignments between actions and under-
stand how the corrected localization results are propagated through the
alignments. With a comprehensive understanding, they aimed to iden-
tify and correct a few misalignments. The remaining misalignments are
expected to be corrected automatically for saving efforts. For example,
E2 expressed the need for a tool to inspect action alignments, identify
misalignments, and correct them for more effective propagation.

4 DESIGN OF ACTLOCALIZER

Guided by the requirements, we have developed ActLocalizer to
iteratively improve the performance of action localizers. As shown
in Fig. 3, the analysis process begins with an input set of videos and
their single-frame annotations. Given the unstructured nature of this
input, we first transform it into structured actions and alignments that
are suitable for visualization. The visualization then facilitates user
feedback, which in turn refines the actions and alignments for further
analysis. Specifically, in the data transformation phase, an initial action
localizer is trained on the input set for detecting the actions (Fig. 3(a)).
The action improvement module (Fig. 3(b)) first aligns similar actions
together. Then it propagates the single-frame annotations to the similar
actions (R3). When transitioning to the visualization phase, the action
visualization module organizes the actions hierarchically and explains
the actions and their alignments with a storyline (R1, Fig. 3(c)).
During exploration, users can correct wrong localization results of
actions (R2) and misalignments between them (R4). The corrected
alignments are utilized to improve other alignments, and the corrected
localization results are propagated through the updated alignments to
obtain improved actions (Fig. 3(d)). Based on the improved actions,
the action localizer is fine-tuned for better performance (Fig. 3(e)).

4.1 Propagation-based Action Improvement
The propagation-based action improvement includes two main compo-
nents: action alignment and annotation propagation.

4.1.1 Action Alignment
Given two actions P and Q, the action alignment establishes the tem-
poral correspondence between their frames (Fig. 4). A straightforward
solution is to use dynamic time warping [39]. However, it requires
the alignments of each frame in one action with at least one frame in
another action. In practice, detected actions usually include background
frames, which should not be aligned with any action frames. To address
this issue, we adopted the method proposed by Tan et al. [47], which
enables background frames to remain unaligned. This method aligns
actions by maximizing the total similarities of the aligned pairs:

max
z

|P|

∑
i=1

|Q|

∑
j=1

zi jsi j s.t. zi j ∈ {0, 1}. (1)

P1 P2 P3

Q1 Q2 Q3

Add constraints
Find the

heaviest path

0.9
P1-Q1 P2-Q2

P2-Q3

P3-Q2

0.5

0.9

0.8

(a) (b)

P1-Q1 P2-Q2 P2-Q3P1-Q1 P2-Q2

P2-Q3

0.8

0.9 0.9

P1 P2 P3

Q1 Q2 Q3

0.9 0.3
0.1

0.2 0.9 0.8

0.3
0.5 0.3

Si
m

ila
rit

y

Temporal constraint
P1 P2

Q1 Q2

P1 P2

Q1 Q2

kNN constraint
P1 P2

Q1
0.9 0.2 0.9

P1-Q1
A pair of frames
and their similarity

Fig. 4: Action alignment: (a) adding constraints to construct a graph; (b) finding the heaviest path to obtain the alignments.

Here, zi j is a binary variable indicating whether Pi and Q j are aligned.
Pi and Q j are the i-th and j-th frames of P and Q, respectively. si j is
their cosine similarity, which is a common measure of frame similar-
ity [4]. |P| and |Q| are the numbers of frames in P and Q, respectively.

Since temporal relationships and frame similarities are the most im-
portant factors for aligning actions [48], we introduce the temporal and
kNN constraints into Eq. (1). In addition, to help correct misalignments
more effectively, the must-link/cannot-link constraints are also consid-
ered because they are easy for users to provide. Here we only consider
the most common and domain-agnostic constraints. Other constraints,
such as the interval constraint, can be easily integrated into our method.

• Temporal constraint. As the frames in an action are monotonic in
time, the aligned frame pairs should maintain such monotonicity
(i.e. , ∀(zi j = zrt = 1)∧ (i < r)⇒ j ≤ t).

• kNN constraint. The aligned frame pairs should have similar
content as they represent the same phases of the corresponding ac-
tions. Consequently, each frame within one action is constrained
to align with its k nearest frames within another action. We choose
kNN due to its simplicity and robustness [7,66]. For each frame, k
is adaptively determined by the state-of-the-art method proposed
by Zhao et al. [64]. k of each frame is adaptively determined by
the state-of-the-art method proposed by Zhao et al. [64]. It finds
the smallest k that yields a sufficiently large averaged prediction
confidence for the k nearest frames.

• Must-link/cannot-link constraints. The must-link and cannot-link
constraints are provided by users through interactions. They con-
strain which frame pairs should be aligned and which should not.

All these constraints form a directed acyclic graph (Fig. 4(a)). In
the graph, each node corresponds to a frame pair satisfying the kNN
constraint, with its weight encoding the pair similarity. The edges
between the nodes describe the temporal constraint. For example, in
Fig. 4(a), the edge from “P1-Q1” to “P2-Q2” is added because P1 occurs
before P2 and Q1 occurs before Q2. Each path of the graph represents a
possible alignment result. The must-link/cannot-link constraints specify
the nodes to be included or excluded in the final path. Given this
graph, obtaining the optimal alignments (Eq. (1)) while satisfying the
constraints is equivalent to finding a path that maximizes node weights.
This corresponds to a network heaviest path problem (Fig. 4(b)) and
can be solved by dynamic programming.

(a) Aligned frames should
have the same predictions

(b) Annotated frames keep
the user-provided labels

(c) Neighboring frames should
have the same predictions

Annotated frames

Background

Aligned frames

Weightlifting

Fig. 5: Annotation propagation: (a) aligned frames should have the
same predictions; (b) annotated frames keep the user-provided labels;
(c) neighboring frames should have the same predictions.

4.1.2 Annotation Propagation
Annotation propagation improves localization results by propagating
single-frame annotations and user corrections through the generated
alignments (Fig. 5). This propagation ensures that the aligned frames
should have the same predictions (Fig. 5(a)) and the prediction of the
annotated frames are consistent with their category labels (Fig. 5(b)). If
one boundary of an action is corrected by the user, the frames between
its anchor frame and this boundary are also regarded as the annotated
frames. In addition, due to the temporal relationships among frames,
each unannotated frame should have the same predictions as its tem-
porally closest annotated frame (Fig. 5(c)). Accordingly, annotation
propagation is formulated as a quadratic optimization problem:

min
F

T

∑
i, j

zi j
∥∥Fi−F j

∥∥2
+α

T

∑
i

δi∥Fi−Gi∥2+β

T

∑
i

min(∥Fi−Fc
i∥2,τ). (2)

The first term minimizes the prediction difference between the aligned
frames. The second term ensures the consistency between the pre-
dictions and the category labels for the annotated frames. The third
term minimizes the prediction difference between unannotated frames
and their temporally closest annotated frames. The weights α and β

balance the three terms.
Following the work of Iscen et al. [23], the first term utilizes the L2

loss to measure the prediction difference between the aligned frames.
T is the total number of frames. Fi represents the prediction of the i-th
frame across different categories. zi j = 1 indicates the i-th and j-th
frames are aligned, and 0 otherwise. The second term also uses the L2
loss to measure the difference between the predictions of the annotated
frames and their category labels. Gi is the category label of the i-th
frame. δi = 1 indicates the i-th frame is annotated, and 0 otherwise.
The third term utilizes the truncated mean squared error function [16]
to measure the prediction consistency between each unannotated frame
i and its temporally closest annotated frame Fc

i . The i-th frame is likely
to be a background frame if the prediction difference between Fi and
Fc

i is larger than a threshold τ . Limiting the mean squared error to
τ prevents the background frames from being mispredicted as action
frames. α , β , and τ are determined by a grid search to balance the
magnitude difference among the three terms. The optimization problem
Eq. (2) can be solved by the gradient descent method [16].

4.2 Action Visualization
To help users explore and correct a large number of actions and their
alignments, we cluster the actions into a hierarchy. Based on the
hierarchy, we developed a storyline visualization to explain the actions
and their alignments. Several interactions are also provided to help
users correct misalignments and wrong localization results.

4.2.1 Hierarchical Action Clustering
In ActLocalizer, an action hierarchy is built by a divisive method,
which is one of the most widely used hierarchical clustering methods
and fast in computation [44]. The divisive method repeatedly applies a
flat clustering algorithm to build the hierarchy in a top-down manner.

We choose K-medoids [42] as the flat clustering algorithm due to
its simplicity and robustness to noise [2, 35]. Following the work
of Wang et al. [54], the action similarities used for clustering are
measured by the averaged similarities of aligned frame pairs between
two actions. As there is no gold standard for determining the number of
clusters [40,52,57], we employ the average silhouette width to evaluate
the cluster results because it considers both the cluster compactness and
separability, and use a grid search for the best one. Other methods for
determining the number of clusters can also be used in our hierarchical
action clustering method.

To provide an overview of the action hierarchy, a set of represen-
tative frames (U) is selected from each displayed cluster [6, 9]. This
selection aims to retain the representation quality while minimizing the
number of the selected frames:

min
U

Tc

∑
j=1

min
i∈U

di j + γ|U |. (3)

The first term ensures better representativeness by minimizing the sum
of the minimum dissimilarities between the selected frames and each
unselected one. The second term favors the selection of a small subset
of frames. di j = 1− si j , where si j is the cosine similarity between two
frames. Tc is the total number of frames in an action cluster. |U | is the
number of the selected frames, and γ is the weight to control the number
of the selected frames. According to the study of Elhamifar et al. [15], it
can be set as maxi j di j/M to select around M frames. In our implemen-
tation, M is set as 10 due to the space limit. As optimizing Eq. (3) is NP-
hard, we employ a state-of-the-art approximate algorithm, the Alternat-
ing Direction Method of Multipliers [15,59], to solve it. This method de-
composes the optimization problem into a set of simpler sub-problems
and optimizes each sub-problem alternatively to obtain the final result.

4.2.2 Visual Design
Previous studies have demonstrated the effectiveness of the storyline
metaphor in conveying sequential data and their temporal interconnec-
tions [32,50,61]. Therefore, we adopt this metaphor to illustrate actions
and their alignments. The visual design consists of two parts: 1) a cate-
gory list to represent the action categories (Fig. 1(a)); 2) a storyline to
illustrate the actions and their alignments (action view, Fig. 1(b)).

In the category list, users examine the overview of the detected
actions across different categories and their uncertainty. Each category
is represented by a rectangle (Fig. 1A). The simple drawing (e.g. ,)
denotes the category label, and the number of actions in that category
is shown below the drawing. A solid filling style is utilized to encode
the uncertainty of the category, which is inversely proportional to the
average confidence of all the frames in this category. The greater the
filling height, the increased uncertainty. These categories are placed in
descending order of uncertainty from top to bottom.

In the action view, the storyline enables users to explore actions
at different levels of detail and identify the actions of interest. As
shown in Fig. 1B, each contour represents an action cluster, where
each thin line () represents an action, and each thick line ()
represents an action sub-cluster. The circles () on each line represent
the unannotated frames of the action, and the stars () represent the
annotated frames. The horizontal positions of the frames represent their
sequential orders. The vertical distance between the circles/stars at
the same horizontal positions indicates whether the associated frames
are aligned. The circles/stars are close if their associated frames are

F1 F2

F3

F5 F6

F4

F1 F2

F3

F5 F6

F4

Constructed hierarchyFrames

Missing alignment

F1 F2 F3 F4 F5 F6Optimal
order

Sub-optimal
order F1 F3 F2 F5 F4 F6

Aligned frames are not adjacent

Aligned frames

Fig. 6: Some alignments are left out by the constructed hierarchy.

aligned; otherwise, they are unaligned. The representative frames of a
cluster are displayed above its contour with the associated circles/stars
highlighted in orange. The bar chart on the right side of each cluster
shows the distribution of the action lengths (Fig. 1C).

4.2.3 Layout
As the implementation of the category list is easy, here we focus on
introducing how to generate the storyline. The state-of-the-art solution,
StoryFlow [32], generates legible storylines by placing entities in the
same group adjacently while reducing line crossings, line wiggles, and
white space. Similar to StoryFlow, the aligned frames are expected
to be placed adjacently while satisfying these legibility constraints.
However, utilizing StoryFlow directly presents two key issues. First,
StoryFlow assumes that each entity has a synchronized timestamp and
places the entities with the same timestamp at the same horizontal posi-
tion. As actions are usually captured at different times, their frames do
not have such synchronized timestamps. Second, StoryFlow assumes
the existence of a location hierarchy for each timestamp. Based on the
hierarchies, StoryFlow reduces line crossings and wiggles while ensur-
ing that entities in the same sub-hierarchy are placed adjacently along
the vertical direction. To apply StoryFlow to generate our storyline,
we can build hierarchies for each timestamp based on the alignments
between frames. However, as some aligned frames may belong to dif-
ferent sub-hierarchies, such hierarchies may overlook these alignments
and result in sub-optimal orders. For example, the aligned pair “F3-F4”
in Fig. 6 is overlooked by the constructed hierarchy as they belong to
two different sub-hierarchies. This subsequently leads to a sub-optimal
order where “F3” and “F4” are not placed adjacently.

To address these issues, we develop a layout method that consists of
a horizontal placement and a vertical placement (Fig. 7). The horizontal
placement aims to place aligned frames with higher similarities at the
same horizontal positions (Fig. 7(a)), and the vertical placement seeks
to reduce line crossings, line wiggles, and white space (Fig. 7(b)).
Horizontal placement. Mathematically, the horizontal placement is
expressed as:

max
x ∑

P,Q∈A
∑

x(Pi)=x(Q j)

(zi j +λ · si j)

s.t. x(Pi)< x(P j) if i < j, ∀ P ∈A.

(4)

The first term ensures that aligned frames are placed at the same horizon-
tal positions. The second term encourages similar frames to be placed at
the same horizontal positions. The constraint guarantees that the frames’
horizontal positions are consistent with their sequential orders. A is a
set of actions, x(·) is the horizontal position of a frame, zi j is a binary
variable indicating whether frames Pi and Q j are aligned (zi j = 1) or not
(zi j = 0), si j is their cosine similarity, and λ is the weight to balance the
two terms. Since the primary goal of this step is to place aligned frames
at the same positions, the weight of the first term (alignment) should
be larger than that of the second term (similarity). Therefore, we set λ

as 0.1 in our implementation. Following the work of Feng et al. [17],
this optimization problem is solved by a greedy strategy. This strategy
iteratively determines the horizontal position of the frames in one action
at a time, while freezing the frames of previously placed actions.
Vertical placement. The vertical placement consists of three steps:
ordering, straightening, and compaction (Fig. 7(b)). The compaction
algorithm of StoryFlow is employed to reduce unnecessary white
space, so we focus on introducing the first two steps.

Ordering. This step ensures that the aligned frames are placed
adjacently along the vertical direction while minimizing line crossings.

min
φ

∑
P,Q∈A

∑
x(Pi)=x(Q j)

zi j · I(|φ(Pi)−φ(Q j)|> 1)+µC(φ) (5)

The first term ensures that aligned frames are placed in adjacent vertical
positions, while the second term penalizes line crossings. Here, φ(·)
denotes the vertical order of a frame among all frames at the same
horizontal position and C(φ) is the number of line crossings. µ is the
weight to balance the two terms, which is set as 3 in our implementation

Actions and their alignments (a) Horizontal placement (b) Vertical placement

Ordering Straightening

Aligned frames and
their similarity

P

Q
0.7 0.6

0.7

Q

R
0.80.8 0.8

0.7 0.7 0.7 0.6
P
R

0.60.6

P
Q
R

P
Q

R P
Q
R

Fig. 7: The storyline layout: (a) horizontal placement places aligned frames with higher similarities at the same horizontal positions; (b) vertical
placement places aligned frames adjacently while minimizing line crossings (ordering) and the wiggle number (straightening).

to prioritize the reduction of line crossings. The global optimum of
Eq. (5) is obtained using state compression dynamic programming [20].

Straightening. The main goal of straightening is to minimize the
number of line wiggles while also preserving the vertical distances
between frames based on their alignments. This is formulated as a
constrained optimization problem:

min
y ∑

P∈A
∑

i
I[y(Pi) ̸= y(Pi+1)]

+µ ∑
P,Q∈A

∑
x(Pi)=x(Q j),

|φ(Pi)−φ(Q j)|=1

[|y(Pi)− y(Q j)|− (1− zi j)]
2

s.t. y(Pi)< y(Q j) if φ(Pi)< φ(Q j).

(6)

The first term penalizes the line wiggles, while the second term
guarantees vertical closeness between aligned frames and maintains a
specific vertical distance between unaligned frames. y(·) is the vertical
position of a frame. The weight µ is used to balance the magnitude
difference between the two terms and is determined by a grid search.
Eq. (6) can be solved by dynamic programming.

4.2.4 Interactive Exploration and Correction
To help users easily correct misalignments and wrong localization
results, ActLocalizer provides two types of interactions: action filtering
and interactive correction.
Action filtering. When users identify an action of interest, they can fil-
ter this action and its neighbors to better analyze their alignments
(Fig. 8). The selected action and its neighbors are placed on the
top (Fig. 8(a)). The frames (Fig. 8(b)) and the associated video clip
(Fig. 8(c)) of the selected action are also provided to facilitate the
examination and analysis in context.
Interactive correction. ActLocalizer allows users to enhance the per-
formance of action localizers by interactively correcting misalignments
and wrong localization results.

Correcting misalignments. When users identify misalignments, they
can correct them directly in the visualization. Users can drag two
frames closer to indicate that they must be aligned and farther apart to
indicate that they cannot be aligned. The corrections are converted to
the must-link and cannot-link constraints in the alignment algorithm,
which are then utilized to update the other alignments between actions.

(a)

(b) (c)

Fig. 8: Selecting an action of interest: (a) the storyline to show the
alignments between the selected action and its neighbors; (b) the con-
tent of the associated frames; (c) the associated video clip.

Table 1: Performance comparison between our method and SF-Net in
terms of the mAP (in %) on two benchmark datasets.

Annotations 2% 5% 10% 20%
SF-Net

+ our method
42.70

(+1.10)
42.91

(+1.18)
43.08

(+1.04)
43.49

(+0.74)
SF-Net 41.60 41.73 42.04 42.75

(a) THUMOS14

Annotations 2% 5% 10% 20%
SF-Net

+ our method
32.51

(+1.03)
32.79

(+1.18)
33.21

(+1.25)
33.36

(+1.03)
SF-Net 31.48 31.61 31.96 32.33

(b) BEOID

Correcting wrong localization results. If users identify wrong lo-
calization results, including imprecise boundaries and noisy category
labels, they can right-click the frames to annotate the boundaries or
click in Fig. 1D to change the category labels. The corrected localiza-
tion results are then propagated to other similar actions. To reduce user
efforts in this correction process, ActLocalizer allows them to annotate
a rough boundary and recommends a more precise one based on the
rough one. The recommended boundary is obtained by propagating the
annotated rough boundary using the propagation method described in
Sec. 4.1.2. If the recommended boundary is still imprecise, users can an-
notate a new one based on the recommendation and iteratively refine it.

5 EVALUATION

We conducted quantitative evaluation to evaluate the performance of
the propagation-based action improvement method and a case study to
demonstrate the effectiveness of ActLocalizer.

5.1 Quantitative Evaluation on Action Localization

Datasets. In this experiment, two widely used datasets are employed.
The first dataset, THUMOS14 [22], contains 200 training videos
(63,575 frames) and 213 test videos (70,044 frames) with 20 sports
categories. We noticed that some cliff diving actions were annotated
as diving. To mitigate this inconsistency, we merged these two cat-
egories into a single category, namely "diving." The second dataset,
BEOID [12], contains 58 videos (6,588 frames) with 30 action cate-
gories. They are recorded in six different scenes (e.g. , kitchens and
gyms). The videos are randomly split into an 80% training set and a
20% test set. Each action in the training sets of both datasets has a
single-frame annotation [37].
Experimental settings. Theoretically, our propagation-based action
improvement method can enhance the performance of any single-frame-
oriented localization method. In this experiment, we selected the state-
of-the-art one, SF-Net, as a representative example. The effectiveness
of our method is demonstrated by comparing the performance of SF-Net
with and without our propagation-based action improvement method.
To conduct the experiments while saving user annotation time and
efforts, we simulated user-provided boundary annotations by randomly
sampling v% (v ∈ {2, 5, 10, 20}) of actions and using the ground
truth boundaries as the annotations. For SF-Net without our method,
the RGB features extracted by Swin Transformer [34] and optical

Takeoff
phaseF1

C1

Flight
phaseF2

Before

After

B

Detected boundaries CorrectedCorrected
Left Right

A1 Associated
frames

F3

...
8

...
4

...
2

Left most but
imprecise

Fig. 9: When analyzing the high jumping category, C1 with more frames on the left side and imprecise boundaries is identified.

flow features extracted by I3D network [5] (a pretrained model) are
utilized for training. Based on the extracted features, SF-Net uses
both single-frame and user-provided boundary annotations to train an
action localizer, which is utilized to detect actions. Then, the detected
actions are utilized to fine-tune the action localizer. For SF-Net with our
method, the proposed propagation-based action improvement method is
added to improve the detected actions by propagating the user-provided
boundary annotations to similar actions.

Result. Performance was evaluated by mAP@IoU and mAP@Hit [37],
the commonly used measures for temporal action localization. We
found that using the mAP@IoU and mAP@Hit scores led to similar
conclusions. Therefore, we included only the mAP@IoU scores in the
paper and abbreviate them as mAP scores, while the mAP@Hit scores
can be accessed in the supplementary material. As shown in Table 1,
our method improved the localization performance on the two datasets.

5.2 Case Study

We conducted a case study with E1 and E2, the experts consulted for the
requirement analysis, to demonstrate the effectiveness of ActLocalizer
in improving the performance of action localizers trained on single-
frame annotations. The case study was conducted on a subset of THU-
MOS14, consisting of 1,135 actions in seven Track and Field sports
action categories. An initial action localizer was trained on the single-
frame annotations with SF-Net, which achieved a mAP of 47.47%. The
experts were not satisfied with the performance and wanted to improve
it with ActLocalizer. As the experts were not involved in the design
phase, we introduced the visual design and interactions of ActLocalizer

to them before the case study. It lasted around 15 minutes. During
the case study, E1 focused on improving the performance of the three
categories of jumping sports (high jumping, long jumping, and pole
jumping), and E2 focused on the four categories of throwing sports
(javelin throwing, shot put, hammer throwing, and discus throwing).
Here, we take high jumping and javelin throwing as two examples to
illustrate the basic idea. In the case study, we employed the pair ana-
lytics protocol [1], which allows experts to concentrate on analytical
tasks while we navigate the tool.

5.2.1 High Jumping Action Localization

E1 started his analysis by examining the uncertainty of the seven action
categories (Fig. 1(a)). Among them, the high jumping category ()
was at the top in the category list, which indicated it had the highest
uncertainty. To investigate the cause of such high uncertainty, E1
selected this category and switched to the action view.
Identifying wrong localization results (R1). In the action view, the
high jumping actions were clustered into five groups (Fig. 1(b)). Typ-
ically, a high jumping action starts from an approach phase (), fol-
lowed by a takeoff phase () and a flight phase (). By checking the
representative frames, E1 noticed that the starting points of the actions
in the top three clusters were not the approach phases but the takeoff
phases (Fig. 1E). To investigate why the starting points of these clusters
were imprecise, he decided to examine them one by one.
Correcting imprecise boundaries (R3, R4). E1 first selected the
top cluster and zoomed in for further analysis. It contains seven sub-
clusters, two of which are shown in Fig. 9. He examined the annotated

A1

RoughRecommended
A5

Preparation phase
F4

Approach phase

A3 A4A2

F6 F5
F7F8

Approach phase of A1

Fig. 10: After correcting the imprecise boundaries of A1 in the high jumping category, more frames of the approach phase are detected. Some
unaligned frames are also identified in A1’s neighbors (A2–A5).

C2

A panorama of several frames

F9

Fig. 11: Further analysis on the high jumping category identifies sub-cluster C2 with more frames on the right side.

frames and their locations in these actions and found that all of them
were in the takeoff (Fig. 9F1) or flight (Fig. 9F2) phases. He concluded
that the model could not learn to detect the approach phase without any
annotated frames from this phase. Thus, E1 decided to add some anno-
tated frames of the approach phase to the training set. He first analyzed
sub-cluster C1 where the left boundaries were the left most of these
actions but still imprecise (Fig. 9C1). He randomly selected one action
(Fig. 9A1) in this sub-cluster and checked its boundaries. This action
was recorded in a TV show. Therefore, the man was not a professional
jumper and was using an outdated forward jumping technique. E1 found
that both the left and right boundaries (frames with orange borders in
Fig. 9F3) were imprecise. As E1 quickly identified the boundaries
(frames with green borders in Fig. 9F3), he corrected them directly.

The corrected boundaries of A1 were propagated, and the visualiza-
tion was updated accordingly (Fig. 10). In A1’s neighbors, more frames
of the approach phase were detected (Fig. 10F4), and their boundaries
were corrected. This demonstrated the effectiveness of the developed
propagation-based action improvement method.

Correcting misalignments (R2, R3, R4). In the updated visualization,
E1 also observed that some frames of four A1’s neighbors (A2–A5 in
Fig. 10) were not aligned with A1. To investigate the cause, he decided
to examine them one by one.

E1 first examined the unaligned frames of A2 (Fig. 10F5). Some
of these frames belonged to the approach phase but were not aligned
with those of A1. Instead, A2’s frames left to the approach phase were
aligned (Fig. 10F6). These frames belonged to the preparation phase
and looked very similar to the approach phase. Such similarity led to
the misalignments. To correct the alignments, E1 decided to align the
precise left boundary of A2 with that of A1. However, E1 would need
a lot of time to identify the precise left boundary of A2 because the
frames of the preparation and approach phases near the boundary looked
similar. To accelerate the annotation process, E1 used the boundary
recommendation function. He first annotated a rough left boundary
for this action (Fig. 10F7). Then ActLocalizer recommended a more
precise boundary (Fig. 10F8) based on the roughly annotated one. E1
confirmed that it was the precise boundary and dragged it to be aligned
with the left boundary of A1. Similarly, E1 checked A3, A4, and A5 and

corrected their alignments with A1. These corrections were converted
to the must-link constraints and utilized to update other alignments.

With the updated alignments, the corrected boundaries were propa-
gated to the similar actions. A1 and its neighbors were well aligned. E1
was satisfied with this and proceeded to check the actions in sub-cluster
C1. According to the representative frames, the approach phases of
these actions were correctly detected. This was also verified by the bar
chart, which showed that most of the action lengths were longer than
before (Fig. 9B). He was satisfied with the localization improvement in
this sub-cluster and proceeded to examine the remaining sub-clusters.
Correcting noisy category labels (R2). While examining the re-
maining sub-clusters, E1 discovered an interesting one, C2 (Fig. 11).
Compared to others, the actions in C2 had more frames on the right
side. To investigate this, E1 checked the associated frames of one such
action and found that it was a panorama of several frames in a high
jumping action (Fig. 11F9). These frames could probably hurt the train-
ing process as the optical flow features were used to train the action
localizer. These features represent human motions or human-object
interactions in videos because they capture the relative motion between
the cameras and the scenes [5]. However, for such a panorama, the
optical flow features would capture the camera motion instead of the
human motion. Thus, it should not be regarded as an action (a human
motion or a human-object interaction). E1 then labeled the associated
frames as background frames.

Next, E1 examined the remaining high jumping action clusters in
Fig. 1(b) and corrected misalignments and wrong localization results.
In total, five boundaries and 25 alignments of high jumping actions
were corrected. These corrections were utilized by the propagation-
based action improvement method to obtain improved actions, which
were used to fine-tune the action localizer. The mAP was increased
from 47.47% to 47.99%.

5.2.2 Javelin Throwing Action Localization
After the correction of the high jumping category, the uncertainty of
the javelin throwing category () became the highest. Therefore, E2
selected this category for further analysis.
Identifying wrong localization results (R1). In the action view

Se
lec

t

C1

A3
A1

A2

Two release phases F1

The end of A1 is aligned
with the beginning of A2 F2

Fig. 12: The action view of the javelin throwing category: (a) cluster C1; (b) examination of A1 selected from cluster C1.

Table 2: The numbers of corrected boundaries and alignments, as well
as annotation time comparison between ActLocalizer and the baseline.

Method # boundaries # alignments time mAP

Baseline 113 0 4.49 h 57.11%
ActLocalizer 34 211 0.99 h 58.29%

(Fig. 12), the representative frames of cluster C1 revealed the pres-
ence of two release phases (Fig. 12F1). It is abnormal since the
actions in a cluster should be aligned without any repetitive phases.
This phenomenon indicated that some actions in this cluster were not
aligned properly. To investigate the cause of such misalignments, E2
selected one action, A1, for further examination.
Correcting misalignments (R3, R4). By examining the alignments
between the selected action A1 and its neighbors, E2 found that the end
of action A1 was aligned with the beginning of action A2 (Fig. 12F2).
It was abnormal because the beginnings of two actions should be
aligned, as well as their ends. Further investigation revealed that a set
of identical frames were detected in both A1 and A2, which caused the
abnormal alignments. These abnormal alignments resulted in incorrect
localization results by preventing the same action phases being aligned.
To address this issue, E2 corrected the alignments directly by dragging
and dropping. Additionally, he examined and corrected the alignments
of other neighbors (Fig. 12A3).

E2 continued to examine and correct the alignments and localization
results of other clusters. In total, five boundaries and 21 alignments of
javelin throwing actions were corrected. The mAP was improved from
47.99% to 49.56%.

5.2.3 Other Action Localization and Post Analysis

Actions in other categories. Similar to the analysis of the high
jumping and the javelin throwing categories, E1 and E2 analyzed
the remaining five categories. 24 more boundaries and 165 more
alignments were corrected. The mAP was increased from 49.56%
to 58.29%. Overall, the experts improved the mAP of all the seven
categories from 47.47% to 58.29% by correcting a total of 34
boundary annotations and 211 alignments.
Post analysis. After the case study, we conducted a quantitative eval-
uation to demonstrate the annotation efficiency of ActLocalizer in
comparison with a human-in-the-loop method without ActLocalizer.
The latter selects the most uncertain actions for users to annotate, which
is one of the most widely-used active learning methods to save annota-
tion efforts [29]. We compared the two methods in terms of the number
of corrected boundaries and alignments, annotation time, and mAP.
The annotation time for the baseline method was estimated based on
the previous study of Ma et al. [37], which indicated an average of
five minutes for annotating action boundaries in a one-minute video.
The results summarized in Table 2 show that despite requiring addi-
tional must-link/cannot-link constraints, ActLocalizer largely reduces
the number of boundaries and annotation time, indicating improved
annotation efficiency. For example, ActLocalizer saves 78% annotation
time compared with the baseline. Additionally, ActLocalizer achieves
a higher mAP as well.

6 EXPERT FEEDBACK AND DISCUSSION

Following the case study, four semi-structured interviews were con-
ducted with the four experts we worked with. As E3 and E4 did not
participate in the case study, we spent around 20 minutes to introduce
the tool and the case study before the interviews. Each interview lasted
30 to 50 minutes. All the experts provided positive feedback on the
usability of ActLocalizer. They also pointed out its limitations and
suggested directions for future research.

6.1 Usability

Intuitive visual design and simple interactions. All the experts ap-
preciated the intuitive design of the action view. For example, E2

said, “Using lines to represent the actions and the distance between
them to depict the alignments is very intuitive to me, and I quickly
became familiar with the design.” E4 appreciated the simple interac-
tions supported by ActLocalizer. For example, he found that correcting
alignments was intuitive. It involved simply dragging and dropping op-
erations to indicate which ones should or should not be aligned. “Since
this tool does not require any prior knowledge of the underlying model,
I believe that practitioners can learn to use it quickly,” he commented.

Reducing annotation efforts. All the experts were impressed by a
78% reduction in annotation time. E1 noted that the boundary recom-
mendation helped save time in annotating imprecise boundaries. He
said, “When I am unsure about boundaries, I often turn to the boundary
recommendation feature. It largely saves my annotation efforts in the
case study.” E2 also said that exploring the actions at different levels
of detail saved his efforts in identifying wrong localization results, “It
helps me quickly identify wrong localization results at the global level
and zoom in for more in-depth analysis.”

Generalization to non-single-frame-oriented localization methods.
This work focuses on improving the performance of single-frame-
oriented temporal action localization methods. However, the experts
indicated that our method could be directly utilized to enhance other
temporal action localization methods. The propagation-based action
improvement method only relies on the predictions of the frames and
the similarities between them, which can be obtained from any action
localizer. Furthermore, the storyline aims to present the localization
results and the alignments between actions, which are independent of
the underlying localization methods.

6.2 Limitation

Algorithm scalability. The time complexity of the propagation-based
action improvement method is O(m2), where m is the total number of
frames in the training set. For the THUMOS14 dataset with 63,575
frames, the localization results can be updated within one second upon
the user corrections. However, when the number of frames reaches mil-
lions, the update could take several seconds or even minutes. Therefore,
it is worth investigating how to accelerate the propagation-based action
improvement method in the future. One potential solution is to develop
an incremental algorithm that only updates the prediction of frames
affected by the user corrections.

Non-utilization of multi-modality data. In the current implementa-
tion, the action localizer only utilizes image frames. However, videos
also contain other modalities, such as audio. They can provide com-
plementary information to improve the localization performance. For
example, audio can indicate that two men in a video are conversing
even when they have their backs toward the camera. As a result, it
would be valuable to study how to integrate multi-modality data into
the localization model and utilize complementary information between
different modalities to improve performance. Furthermore, in cases
where the performance is not satisfactory, it would be beneficial to
explore ways of visually illustrating the complementary relationships
between modalities. This can assist users in correcting misalignments
and localization errors in a more efficient manner.

7 CONCLUSION

In this paper, we introduce ActLocalizer, a visual analysis method to
improve the performance of action localizers trained on single-frame
annotations. The key feature of our method is the tight integration of
the propagation-based action improvement method with the storyline
visualization to facilitate users in interactively correcting misalignments
and wrong localization results. The corrected alignments are converted
to constraints to derive better alignments for other actions. Based on the
improved alignments, the corrected localization results are propagated
to similar actions to further enhance localization performance. The
effectiveness of ActLocalizer is demonstrated by the reduced annotation
efforts in the quantitative evaluation, the presented findings in the case
study, and the positive feedback from the experts after the case study.

REFERENCES

[1] R. Arias-Hernandez, L. T. Kaastra, T. M. Green, and B. Fisher. Pair
analytics: Capturing reasoning processes in collaborative visual analytics.
In IEEE Hawaii International Conference on System Sciences, pp. 1–10.
Koloa, Kauai, 2011. doi: 10.1109/HICSS.2011.339 7

[2] P. Arora, Deepali, and S. Varshney. Analysis of K-Means and K-Medoids
algorithm for big data. Procedia Computer Science, 78:507–512, 2016.
doi: 10.1016/j.procs.2016.02.095 5

[3] R. P. Botchen, S. Bachthaler, F. Schick, M. Chen, G. Mori, D. Weiskopf,
and T. Ertl. Action-based multifield video visualization. IEEE Transac-
tions on Visualization and Computer Graphics, 14(4):885–899, 2008. doi:
10.1109/tvcg.2008.40 2

[4] K. Cao, J. Ji, Z. Cao, C.-Y. Chang, and J. C. Niebles. Few-shot video
classification via temporal alignment. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10618–
10627, 2020. doi: 10.1109/cvpr42600.2020.01063 4

[5] J. Carreira and A. Zisserman. Quo vadis, action recognition? a new
model and the kinetics dataset. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 6299–6308, 2017. doi: 10.
1109/cvpr.2017.502 7, 8

[6] C. Chen, Y. Guo, F. Tian, S. Liu, W. Yang, Z. Wang, J. Wu, H. Su, H. Pfister,
and S. Liu. A unified interactive model evaluation for classification,
object detection, and instance segmentation in computer vision. IEEE
Transactions on Visualization and Computer Graphics (to be published),
2023. doi: 10.1109/tvcg.2023.3326588 5

[7] C. Chen, Z. Wang, J. Wu, X. Wang, L.-Z. Guo, Y.-F. Li, and S. Liu.
Interactive graph construction for graph-based semi-supervised learning.
IEEE Transactions on Visualization and Computer Graphics, 27(9):3701–
3716, 2021. doi: 10.1109/tvcg.2021.3084694 4

[8] C. Chen, J. Wu, X. Wang, S. Xiang, S.-H. Zhang, Q. Tang, and S. Liu.
Towards better caption supervision for object detection. IEEE Transactions
on Visualization and Computer Graphics, 28(4):1941–1954, 2022. doi: 10
.1109/tvcg.2021.3138933 3

[9] C. Chen, J. Yuan, Y. Lu, Y. Liu, H. Su, S. Yuan, and S. Liu. OoDAnalyzer:
Interactive analysis of out-of-distribution samples. IEEE Transactions on
Visualization and Computer Graphics, 27(7):3335–3349, 2021. doi: 10.
1109/tvcg.2020.2973258 5

[10] M. Chen, R. Botchen, R. Hashim, D. Weiskopf, T. Ertl, and I. Thornton.
Visual signatures in video visualization. IEEE Transactions on Visualiza-
tion and Computer Graphics, 12(5):1093–1100, 2006. doi: 10.1109/tvcg.
2006.194 2

[11] Z. Chen, S. Ye, X. Chu, H. Xia, H. Zhang, H. Qu, and Y. Wu. Augmenting
sports videos with VisCommentator. IEEE Transactions on Visualization
and Computer Graphics, 28(1):824–834, 2022. doi: 10.1109/tvcg.2021.
3114806 2

[12] D. Damen, T. Leelasawassuk, O. Haines, A. Calway, and W. W. Mayol-
Cuevas. You-Do, I-Learn: Discovering task relevant objects and their
modes of interaction from multi-user egocentric video. In Proceedings of
the British Machine Vision Conference, pp. 1–13, 2014. doi: 10.5244/c.28
.30 6

[13] G. Daniel and M. Chen. Video visualization. In Proceedings of the IEEE
Visualization Conference, pp. 409–416, 2003. doi: 10.1109/visual.2003.
1250401 2

[14] B. Duffy, J. Thiyagalingam, S. Walton, D. J. Smith, A. Trefethen, J. C.
Kirkman-Brown, E. A. Gaffney, and M. Chen. Glyph-based video vi-
sualization for semen analysis. IEEE Transactions on Visualization and
Computer Graphics, 21(8):980–993, 2015. doi: 10.1109/tvcg.2013.265 2

[15] E. Elhamifar, G. Sapiro, and S. S. Sastry. Dissimilarity-based sparse
subset selection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 38(11):2182–2197, 2015. doi: 10.1109/tpami.2015.2511748
5

[16] Y. A. Farha and J. Gall. MS-TCN: Multi-stage temporal convolutional
network for action segmentation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 3575–3584, 2019.
doi: 10.1109/cvpr.2019.00369 4

[17] D.-F. Feng and R. F. Doolittle. Progressive sequence alignment as a
prerequisitetto correct phylogenetic trees. Journal of Molecular Evolution,
25(4):351–360, 1987. doi: 10.1007/bf02603120 5

[18] Z. Han, X. He, M. Tang, and Y. Lv. Video similarity and alignment
learning on partial video copy detection. In Proceedings of the ACM
International Conference on Multimedia, pp. 4165–4173, 2021. doi: 10.
1145/3474085.3475549 3

[19] J. He, X. Wang, K. K. Wong, X. Huang, C. Chen, Z. Chen, F. Wang,
M. Zhu, and H. Qu. VideoPro: A visual analytics approach for interactive
video programming. IEEE Transactions on Visualization and Computer
Graphics (to be published), 2023. doi: 10.1109/tvcg.2023.3326586 2

[20] M. Held and R. M. Karp. A dynamic programming approach to sequencing
problems. Journal of the Society for Industrial and Applied mathematics,
10(1):196–210, 1962. doi: 10.1145/800029.808532 6

[21] M. Hoeferlin, B. Hoeferlin, G. Heidemann, and D. Weiskopf. Interactive
schematic summaries for faceted exploration of surveillance video. IEEE
Transactions on Multimedia, 15(4):908–920, 2013. doi: 10.1109/TMM.
2013.2238521 2

[22] H. Idrees, A. R. Zamir, Y.-G. Jiang, A. Gorban, I. Laptev, R. Sukthankar,
and M. Shah. The THUMOS challenge on action recognition for videos
“in the wild”. Computer Vision and Image Understanding, 155:1–23, 2017.
doi: 10.1016/j.cviu.2016.10.018 6

[23] A. Iscen, G. Tolias, Y. Avrithis, and O. Chum. Label propagation for
deep semi-supervised learning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 5070–5079, 2019. doi:
10.1109/cvpr.2019.00521 4

[24] J. Ji, K. Cao, and J. C. Niebles. Learning temporal action proposals with
fewer labels. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 7073–7082, 2019. doi: 10.1109/iccv.2019.00717
2

[25] H.-W. Kang, Y. Matsushita, X. Tang, and X.-Q. Chen. Space-time video
montage. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1331–1338, 2006. doi: 10.1109/cvpr.2006.284 2

[26] K. Kurzhals, M. Hlawatsch, C. Seeger, and D. Weiskopf. Visual analytics
for mobile eye tracking. IEEE Transactions on Visualization and Computer
Graphics, 23(1):301–310, 2017. doi: 10.1109/tvcg.2016.2598695 2

[27] K. Kurzhals, M. John, F. Heimerl, P. Kuznecov, and D. Weiskopf. Visual
movie analytics. IEEE Transactions on Multimedia, 18(11):2149–2160,
2016. doi: 10.1109/tmm.2016.2614184 2

[28] F. Lekschas, B. Peterson, D. Haehn, E. Ma, N. Gehlenborg, and H. Pfis-
ter. PEAX: Interactive visual pattern search in sequential data using
unsupervised deep representation learning. Computer Graphics Forum,
39(3):167–179, 2020. doi: 10.1101/597518 2

[29] D. D. Lewis. A sequential algorithm for training text classifiers: Corrigen-
dum and additional data. Acm Sigir Forum, 29(2):13–19, 1995. 9

[30] Z. Li, Y. Abu Farha, and J. Gall. Temporal action segmentation from
timestamp supervision. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8365–8374, 2021. doi: 10.
1109/cvpr46437.2021.00826 1, 2

[31] S. Liu, C. Chen, Y. Lu, F. Ouyang, and B. Wang. An interactive method to
improve crowdsourced annotations. IEEE Transactions on Visualization
and Computer Graphics, 25(1):235–245, 2019. doi: 10.1109/tvcg.2018.
2864843 3

[32] S. Liu, Y. Wu, E. Wei, M. Liu, and Y. Liu. StoryFlow: Tracking the
evolution of stories. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2436–2445, 2013. doi: 10.1109/tvcg.2013.196 5

[33] X. Liu, Q. Wang, Y. Hu, X. Tang, S. Zhang, S. Bai, and X. Bai. End-to-end
temporal action detection with transformer. IEEE Transactions on Image
Processing, 31:5427–5441, 2022. doi: 10.1109/tip.2022.3195321 1

[34] Z. Liu, J. Ning, Y. Cao, Y. Wei, Z. Zhang, S. Lin, and H. Hu. Video swin
transformer. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3202–3211, 2021. doi: 10.1109/cvpr52688.
2022.00320 6

[35] B. Ma and A. Entezari. Volumetric feature-based classification and visibil-
ity analysis for transfer function design. IEEE Transactions on Visualiza-
tion and Computer Graphics, 24(12):3253–3267, 2018. doi: 10.1109/tvcg.
2017.2776935 5

[36] C.-X. Ma, J.-C. Song, Q. Zhu, K. Maher, Z.-Y. Huang, and H.-A. Wang.
EmotionMap: Visual analysis of video emotional content on a map. Jour-
nal of Computer Science and Technology, 35(3):576–591, 2020. doi: 10.
1007/s11390-020-0271-2 2

[37] F. Ma, L. Zhu, Y. Yang, S. Zha, G. Kundu, M. Feiszli, and Z. Shou. SF-Net:
Single-frame supervision for temporal action localization. In Proceedings
of the European Conference on Computer Vision, pp. 420–437, 2020. doi:
10.1007/978-3-030-58548-8_25 1, 2, 6, 7, 9

[38] A. H. Meghdadi and P. Irani. Interactive exploration of surveillance video
through action shot summarization and trajectory visualization. IEEE
Transactions on Visualization and Computer Graphics, 19(12):2119–2128,
2013. doi: 10.1109/tvcg.2013.168 2

[39] M. Müller. Dynamic time warping. Information Retrieval for Music and

https://doi.org/10.1109/HICSS.2011.339
https://doi.org/10.1016/j.procs.2016.02.095
https://doi.org/10.1109/tvcg.2008.40
https://doi.org/10.1109/tvcg.2008.40
https://doi.org/10.1109/cvpr42600.2020.01063
https://doi.org/10.1109/cvpr.2017.502
https://doi.org/10.1109/cvpr.2017.502
https://doi.org/10.1109/tvcg.2023.3326588
https://doi.org/10.1109/tvcg.2021.3084694
https://doi.org/10.1109/tvcg.2021.3138933
https://doi.org/10.1109/tvcg.2021.3138933
https://doi.org/10.1109/tvcg.2020.2973258
https://doi.org/10.1109/tvcg.2020.2973258
https://doi.org/10.1109/tvcg.2006.194
https://doi.org/10.1109/tvcg.2006.194
https://doi.org/10.1109/tvcg.2021.3114806
https://doi.org/10.1109/tvcg.2021.3114806
https://doi.org/10.5244/c.28.30
https://doi.org/10.5244/c.28.30
https://doi.org/10.1109/visual.2003.1250401
https://doi.org/10.1109/visual.2003.1250401
https://doi.org/10.1109/tvcg.2013.265
https://doi.org/10.1109/tpami.2015.2511748
https://doi.org/10.1109/cvpr.2019.00369
https://doi.org/10.1007/bf02603120
https://doi.org/10.1145/3474085.3475549
https://doi.org/10.1145/3474085.3475549
https://doi.org/10.1109/tvcg.2023.3326586
https://doi.org/10.1145/800029.808532
https://doi.org/10.1109/TMM.2013.2238521
https://doi.org/10.1109/TMM.2013.2238521
https://doi.org/10.1016/j.cviu.2016.10.018
https://doi.org/10.1109/cvpr.2019.00521
https://doi.org/10.1109/cvpr.2019.00521
https://doi.org/10.1109/iccv.2019.00717
https://doi.org/10.1109/cvpr.2006.284
https://doi.org/10.1109/tvcg.2016.2598695
https://doi.org/10.1109/tmm.2016.2614184
https://doi.org/10.1101/597518
https://doi.org/10.1109/cvpr46437.2021.00826
https://doi.org/10.1109/cvpr46437.2021.00826
https://doi.org/10.1109/tvcg.2018.2864843
https://doi.org/10.1109/tvcg.2018.2864843
https://doi.org/10.1109/tvcg.2013.196
https://doi.org/10.1109/tip.2022.3195321
https://doi.org/10.1109/cvpr52688.2022.00320
https://doi.org/10.1109/cvpr52688.2022.00320
https://doi.org/10.1109/tvcg.2017.2776935
https://doi.org/10.1109/tvcg.2017.2776935
https://doi.org/10.1007/s11390-020-0271-2
https://doi.org/10.1007/s11390-020-0271-2
https://doi.org/10.1007/978-3-030-58548-8_25
https://doi.org/10.1007/978-3-030-58548-8_25
https://doi.org/10.1109/tvcg.2013.168

Motion, pp. 69–84, 2007. doi: 10.1007/978-3-540-74048-3_4 3
[40] P. K. Newby, D. Muller, J. Hallfrisch, N. Qiao, R. Andres, and K. L. Tucker.

Dietary patterns and changes in body mass index and waist circumference
in adults. The American Journal of Clinical Nutrition, 77(6):1417–1425,
2003. doi: 10.1093/ajcn/77.6.1417 5

[41] C. Nguyen, Y. Niu, and F. Liu. Video Summagator: An interface for video
summarization and navigation. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 647–650, 2012. doi: 10.
1145/2207676.2207767 2

[42] H.-S. Park and C.-H. Jun. A simple and fast algorithm for K-medoids
clustering. Expert Systems with Applications, 36(2, Part 2):3336–3341,
2009. doi: 10.1016/j.eswa.2008.01.039 5

[43] J. Piazentin Ono, A. Gjoka, J. Salamon, C. Dietrich, and C. T. Silva. His-
toryTracker: Minimizing human interactions in baseball game annotation.
In Proceedings of the CHI Conference on Human Factors in Computing
Systems, pp. 1–12, 2019. doi: 10.1145/3290605.3300293 2

[44] C. K. Reddy and B. Vinzamuri. A survey of partitional and hierarchical
clustering algorithms. In Data clustering, pp. 87–110. Chapman and
Hall/CRC, 2018. doi: 10.1201/9781315373515-4 4

[45] W. Sultani, C. Chen, and M. Shah. Real-world anomaly detection in
surveillance videos. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 6479–6488, 2018. doi: 10.1109/cvpr.
2018.00678 1

[46] M. E. Swift, W. Ayers, S. Pallanck, and S. Wehrwein. Visualizing the
passage of time with video temporal pyramids. IEEE Transactions on
Visualization and Computer Graphics, 29(1):171–181, 2022. 2

[47] H.-K. Tan, C.-W. Ngo, R. Hong, and T.-S. Chua. Scalable detection of
partial near-duplicate videos by visual-temporal consistency. In Proceed-
ings of the ACM International Conference on Multimedia, pp. 145–154,
2009. doi: 10.1145/1631272.1631295 3

[48] H.-K. Tan, X. Wu, C.-W. Ngo, and W.-L. Zhao. Accelerating near-
duplicate video matching by combining visual similarity and alignment
distortion. In Proceedings of the ACM International Conference on Multi-
media, pp. 861–864, 2008. doi: 10.1145/1459359.1459506 4

[49] L. Tan, Y. Song, S. Liu, and L. Xie. ImageHive: Interactive content-
aware image summarization. IEEE Computer Graphics and Applications,
32(1):46–55, 2011. doi: 10.1109/mcg.2011.89 2

[50] Y. Tanahashi and K.-L. Ma. Design considerations for optimizing story-
line visualizations. IEEE Transactions on Visualization and Computer
Graphics, 18(12):2679–2688, 2012. doi: 10.1109/TVCG.2012.212 5

[51] T. Tang, Y. Wu, L. Yu, Y. Li, and Y. Wu. VideoModerator: A risk-
aware framework for multimodal video moderation in e-commerce. IEEE
Transactions on Visualization and Computer Graphics, 28(1):846–856,
2022. doi: 10.1109/tvcg.2021.3114781 2

[52] P. Togo, M. Osler, T. Sørensen, and B. Heitmann. Food intake patterns
and body mass index in observational studies. International Journal of
Obesity, 25(12):1741–1751, 2001. doi: 10.1038/sj.ijo.0801819 5

[53] X. Wang, S. Zhang, Z. Qing, Y. Shao, C. Gao, and N. Sang. Self-supervised
learning for semi-supervised temporal action proposal. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 1905–1914, 2021. doi: 10.1109/cvpr46437.2021.00194 2

[54] Y. Wang, M. Belkhatir, and B. Tahayna. Near-duplicate video retrieval
based on clustering by multiple sequence alignment. In Proceedings of the
ACM International Conference on Multimedia, pp. 941–944, 2012. doi:
10.1145/2393347.2396352 5

[55] A. Wu and H. Qu. Multimodal analysis of video collections: Visual
exploration of presentation techniques in ted talks. IEEE Transactions on
Visualization and Computer Graphics, 26(7):2429–2442, 2020. doi: 10.
14711/thesis-991012757568503412 2

[56] H. Xia and Y. Zhan. A survey on temporal action localization. IEEE
Access, 8:70477–70487, 2020. 1

[57] R. Xu and D. Wunsch. Survey of clustering algorithms. IEEE Transac-
tions on Neural Networks, 16(3):645–678, 2005. doi: 10.1109/TNN.2005.
845141 5

[58] L. Yang, J. Han, T. Zhao, T. Lin, D. Zhang, and J. Chen. Background-
click supervision for temporal action localization. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 44(12):9814–9829, 2022. doi:
10.1109/tpami.2021.3132058 1, 2

[59] W. Yang, X. Ye, X. Zhang, L. Xiao, J. Xia, Z. Wang, J. Zhu, H. Pfister,
and S. Liu. Diagnosing ensemble few-shot classifiers. IEEE Transactions
on Visualization and Computer Graphics, 28(9):3292–3306, 2022. doi: 10
.1109/tvcg.2022.3182488 5

[60] Y. Yu, D. Kruyff, J. Jiao, T. Becker, and M. Behrisch. PSEUDo: Interactive

pattern search in multivariate time series with locality-sensitive hashing
and relevance feedback. IEEE Transactions on Visualization and Computer
Graphics, 29(1):33–42, 2023. doi: 10.1109/tvcg.2022.3209431 2

[61] H. Zeng, X. Shu, Y. Wang, Y. Wang, L. Zhang, T.-C. Pong, and H. Qu.
EmotionCues: Emotion-oriented visual summarization of classroom
videos. IEEE Transactions on Visualization and Computer Graphics,
27(7):3168–3181, 2021. doi: 10.1109/tvcg.2019.2963659 2, 5

[62] H. Zeng, X. Wang, A. Wu, Y. Wang, Q. Li, A. Endert, and H. Qu. EmoCo:
Visual analysis of emotion coherence in presentation videos. IEEE Trans-
actions on Visualization and Computer Graphics, 26(1):927–937, 2020.
doi: 10.1109/tvcg.2019.2934656 2

[63] C.-L. Zhang, J. Wu, and Y. Li. ActionFormer: Localizing moments of
actions with transformers. In Proceedings of the European Conference
on Computer Vision, pp. 492–510, 2022. doi: 10.1007/978-3-031-19772
-7_29 1

[64] P. Zhao and L. Lai. Efficient classification with adaptive KNN. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, pp. 11007–11014,
2021. doi: 10.1609/aaai.v35i12.17314 4

[65] T. Zhao, J. Han, L. Yang, and D. Zhang. Equivalent classification mapping
for weakly supervised temporal action localization. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022. doi: 10.1109/TPAMI.
2022.3178957 1

[66] X. Zhu. Semi-supervised learning with graphs. PhD thesis, Carnegie
Mellon University, 2005. 4

https://doi.org/10.1007/978-3-540-74048-3_4
https://doi.org/10.1093/ajcn/77.6.1417
https://doi.org/10.1145/2207676.2207767
https://doi.org/10.1145/2207676.2207767
https://doi.org/10.1016/j.eswa.2008.01.039
https://doi.org/10.1145/3290605.3300293
https://doi.org/10.1201/9781315373515-4
https://doi.org/10.1109/cvpr.2018.00678
https://doi.org/10.1109/cvpr.2018.00678
https://doi.org/10.1145/1631272.1631295
https://doi.org/10.1145/1459359.1459506
https://doi.org/10.1109/mcg.2011.89
https://doi.org/10.1109/TVCG.2012.212
https://doi.org/10.1109/tvcg.2021.3114781
https://doi.org/10.1038/sj.ijo.0801819
https://doi.org/10.1109/cvpr46437.2021.00194
https://doi.org/10.1145/2393347.2396352
https://doi.org/10.1145/2393347.2396352
https://doi.org/10.14711/thesis-991012757568503412
https://doi.org/10.14711/thesis-991012757568503412
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1109/tpami.2021.3132058
https://doi.org/10.1109/tpami.2021.3132058
https://doi.org/10.1109/tvcg.2022.3182488
https://doi.org/10.1109/tvcg.2022.3182488
https://doi.org/10.1109/tvcg.2022.3209431
https://doi.org/10.1109/tvcg.2019.2963659
https://doi.org/10.1109/tvcg.2019.2934656
https://doi.org/10.1007/978-3-031-19772-7_29
https://doi.org/10.1007/978-3-031-19772-7_29
https://doi.org/10.1609/aaai.v35i12.17314
https://doi.org/10.1109/TPAMI.2022.3178957
https://doi.org/10.1109/TPAMI.2022.3178957

	Introduction
	Related Work
	Semi-Supervised Temporal Action Localization
	Interactive Annotation for Sequence Data
	Video Visualization

	Requirement Analysis
	Design of ActLocalizer
	Propagation-based Action Improvement
	Action Alignment
	Annotation Propagation

	Action Visualization
	Hierarchical Action Clustering
	Visual Design
	Layout
	Interactive Exploration and Correction

	Evaluation
	Quantitative Evaluation on Action Localization
	Case Study
	High Jumping Action Localization
	Javelin Throwing Action Localization
	Other Action Localization and Post Analysis

	Expert Feedback and Discussion
	Usability
	Limitation

	Conclusion

