
Computational Visual Media
https://doi.org/10.1007/s41095-023-0393-x Vol. 10, No. 3, June 2024, 399–424

Review Article

Foundation models meet visualizations: Challenges and
opportunities

Weikai Yang1, Mengchen Liu2, Zheng Wang1, and Shixia Liu1 (�)

c© The Author(s) 2024.

Abstract Recent studies have indicated that foun-
dation models, such as BERT and GPT, excel at
adapting to various downstream tasks. This adap-
tability has made them a dominant force in building
artificial intelligence (AI) systems. Moreover, a new
research paradigm has emerged as visualization
techniques are incorporated into these models. This
study divides these intersections into two research
areas: visualization for foundation model (VIS4FM)
and foundation model for visualization (FM4VIS).
In terms of VIS4FM, we explore the primary role
of visualizations in understanding, refining, and eva-
luating these intricate foundation models. VIS4FM
addresses the pressing need for transparency, explai-
nability, fairness, and robustness. Conversely, in terms
of FM4VIS, we highlight how foundation models can
be used to advance the visualization field itself. The
intersection of foundation models with visualizations is
promising but also introduces a set of challenges. By
highlighting these challenges and promising oppor-
tunities, this study aims to provide a starting point for
the continued exploration of this research avenue.
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1 Introduction

A foundation model is a large-scale machine learning
model trained on a large amount of data across
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different domains, generally using self-supervision [1].
Notable examples include bidirectional encoder
representations from transformers (BERT) [2] for
natural language processing, VisionTransformer [3]
and InternImage [4] for computer vision, Contrastive
Language-Image Pretraining (CLIP) [5] for cross-
modal learning, and the generative pre-trained
transformer (GPT) series models [6–8] for text
generation. Unlike traditional machine learning
models, foundation models typically possess para-
meters ranging from hundreds of millions to billions
and require extensive training on vast datasets over
several weeks or months. These immense scales of
parameters and training data enable foundation
models to capture general knowledge regarding the
world and serve as a “foundation” to effectively adapt
to various downstream tasks such as information
extraction, object recognition, image captioning, and
instruction following [1]. To illustrate this, consider
a BERT model. After pretraining on a substantial
text corpus to predict randomly masked words, the
BERT model acquires a foundational understanding
of natural language. This enables the model to rapidly
adapt to various natural language processing tasks,
such as text classification, sentiment analysis, and
question answering. Such tasks often require minimal
task-specific finetuning. Owing to the adaptability of
foundation models, they have become a leading force
in shaping the creation of versatile, high-performance
artificial intelligence (AI) systems across multiple
applications. A recent OpenAI report indicated
that approximately 19% of jobs have undergone
considerable changes, and at least 50% of the tasks
were affected by these models [9].

In this era of big data and AI, the need
to visualize large-scale datasets and machine
learning models has been increasingly observed for
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efficient analyses. Recent studies have indicated that
incorporating humans into the analysis process can
make visualization techniques a critical bridge for
the human comprehension of complex models [10–17].
This enhanced human–AI collaboration facilitates
effective insight communication, informed decision-
making, and improved AI trustworthiness. A new
research paradigm has emerged from incorporating
both visualization techniques and foundation models.
Figure 1 shows the two promising research areas
that arise from this paradigm: visualization for
foundation model (VIS4FM) and foundation model
for visualization (FM4VIS). In VIS4FM, visualization
is an indispensable mechanism for facilitating
the understanding, analysis, and refinement of
foundation models. Conversely, FM4VIS focuses on
how foundation models can be employed to improve
visualization techniques by adapting them to different
visualization-related tasks, such as automatically
generate visualizations and communicate richer
insights to users. Embracing these intersections
between foundation models and visualizations will
advance both fields and improve collaboration
between humans and AI.

While the integration of foundation models and
visualizations is promising, it also introduces some
challenges and new opportunities. On the one
hand, the increasing scale and complexity of
foundation models make the models difficult to
analyze and interpret using traditional manners.
This highlights the need for novel visualization

Fig. 1 Intersections between visualizations and foundation models
divided into two categories: VIS4FM and FM4VIS.

techniques tailored to large-scale models. On
the other hand, while foundation models have
demonstrated a capability to unlock new dimensions
of visualization, methods for maximizing their
capability and the seamless integration of humans
and AI in developing visualizations are topics
that remain largely underexplored. Despite the
promising potential of combining foundation models
and visualizations, to the best of our knowledge,
no comprehensive review has been made available
on this topic. Previous studies have primarily
summarized the intersections between traditional
machine learning models (e.g., boosting trees and
convolutional neural networks) and visualizations,
such as machine learning for visualization [15, 16, 18]
and visualization for machine learning [12–14, 19]. In
this survey, we took initial steps to highlight both the
challenges and opportunities of this emerging research
topic to invite further research.

2 Overview

The intersections between visualizations and foun-
dation models concern two perspectives: VIS4FM
and FM4VIS.
2.1 VIS4FM

VIS4FM focuses on leveraging the power of
visualization tools to understand, refine, and evaluate
intricate foundation models. Figure 2 shows that
foundation models conduct two primary phases:
training and adaptation [1].

Data are the basis for building foundation models
and are critical in determining the performance,
reliability, and ethical standing of the resulting
models. Therefore, ensuring that the data are of high
quality is crucial, such as broad coverage and precise
annotations [46–49]. Given that foundation models
often have billions or even trillions of parameters,
they can learn from vast datasets and absorb both
the beneficial and problematic aspects of the data.
Consequently, the data must be ensured to be not
only extensive but also of high quality. Visualizations
facilitate the data curation process based on
four aspects. First, visualizations guide the data
generation process using real-time feedback regarding
the data coverage and correctness. This allows for
immediate adjustments to be made such that the
generated data adequately represent the intended
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Fig. 2 How visualizations enhance foundation models along the learning pipeline.

scope and have the correct annotations. Second,
visualization is useful for integrating heterogeneous
data from multiple sources into a coherent and
high-quality dataset. This is required for training
successful foundation models. Third, visualization
assists in data selection by providing a visual
representation of the dataset. This simplifies the
identification of high-quality samples. The feedback
provided by users through visualization is used
to further refine the dataset. Fourth, visualization
discloses anomalies and biases in the data and enables
more targeted corrections. This improves both the
efficiency and accuracy of the data correction process.

Training is the initial phase in building foundation
models. The models are trained on vast datasets
that often contain diverse and general information.
This allows the models to learn a wide range
of features, patterns, and knowledge from the
data. During this phase, visualization is essential
for training diagnoses [50, 51]. First, a model
explanation task is conducted to reveal the working
mechanism of the foundation models. Second, the
model developers conduct a performance diagnosis to
identify the root causes of low performance and make
necessary refinements. Finally, an efficiency diagnosis
is conducted to identify bottlenecks that impair the
training speed or waste resources during training.

Foundation models are typically adapted using task-
specific datasets to optimize their performance on
specific downstream tasks. This adaptation process
refines the general knowledge of the models to
better align them with the desired task outputs.
In this phase, visualizations are employed to
facilitate the adaptation steering process in three
manners: model finetuning, prompt engineering, and
alignment via human feedback. In model finetuning,
visualizations help in understanding the knowledge
learned by the models and in analyzing whether the

model is suitable for the downstream tasks. With a
more comprehensive understanding, model developers
can then compare multiple finetuned models and
select the optimal model. In prompt engineering,
visualization streamlines the trial-and-error process
of crafting effective prompts that lead to desired
outputs. In alignment via human feedback, the
model is steered toward human preferences based on
human feedback. Visualizations serve two functions:
(1) aid in collecting human feedback to improve the
training data and (2) offer an interactive platform to
iteratively refine the model outputs.

In addition, visualization is a useful technique for
enhancing the model evaluation process for
both foundation and adapted models [45]. For
quantitative evaluations with clear metrics, visua-
lizations offer users a comprehensive and intuitive
understanding of the model performance. In addition,
given the adaptability of foundation models to
various downstream applications, evaluating their
performance across multiple tasks is important. Well-
designed visualizations facilitate efficient comparative
analyses based on different metrics, thereby enabling
users to select the optimal model or obtain insights for
additional refinements. For a qualitative evaluation
lacking clear metrics, visualization serves as a valuable
tool for incorporating human judgment into the
evaluation process. For example, consider open-ended
questions that lack definitive ground-truth answers;
visualizations can summarize frequent patterns in
model-generated answers and provide an informative
overview. This enables users to evaluate the quality
of the responses more efficiently. Once low-quality
responses are identified, various strategies can be
employed to enhance their quality. One such method
involves enriching the dataset using various instances
of the associated problematic questions.

Building on the above discussion, Table 1 summa-
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Table 1 Overview of the four main processes in VIS4FM

Process Tasks supported by VIS Description Examples # Examples

Data generation Use visualizations to help
create or augment datasets [20] 1

Data integration Use visualizations to help
integrate data from multiple sources — 0

Data selection Interactively select representative samples
that align well with the tasks — 0

Data
curation

Data correction Interactively improve
the quality of datasets [21–26] 6

Model explanation Understand the working
mechanism of models [27–30] 4

Performance diagnosis Troubleshoot issues where models
do not perform as expected [31, 32] 2

Training
diagnosis

Efficiency diagnosis Identify efficiency bottlenecks
in the training process [33] 1

Model finetuning Analyze what knowledge the
models learn during finetuning [34, 35] 2

Prompt engineering Facilitate the construction
of effective prompts [36–40] 5

Adaptation
steering

Alignment via human feedback Utilize human feedback
to steer model outputs [41] 1

Quantitative evaluation Use visualizations to present
quantitative measures [42–44] 3

Model
evaluation

Qualitative evaluation Use visualizations to evaluate and
interpret model capability and behaviors [45] 1

rizes the four main processes in VIS4FM. This table
outlines existing initiatives and highlights areas where
future research can be beneficial, particularly where
few investigations have been conducted to date.

2.2 FM4VIS

FM4VIS leverages the power of foundation models
to create more adaptive, user-friendly, and intelligent
visualization techniques and systems. These efforts
aim to advance the field of visualization. As illustrated
in Fig. 3, the visualization pipeline transforms raw
data into an interpretable visual representation that
allows users to interact with and derive insights

from the presented information [78]. FM4VIS focuses
on enhancing each phase in this pipeline, from
data transformation and visual mapping to view
transformation and visual perception.

Data transformation converts raw data into a
more suitable format for visualization and analysis
purposes. Because foundation models are trained on
diverse datasets, they can be used to perform feature
extraction. This is the extraction of meaningful
features from complex data for visualization purposes.
It is particularly useful for unstructured data
such as text and images, where traditional feature
engineering methods often produce less informative

Fig. 3 How foundation models enhance visualizations along the visualization pipeline.
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features [79]. Foundation models can perform tasks
such as classification, relationship extraction, and object
detection to extract various patterns such as relationships,
trends, and anomalies. These tasks provide visualization
tools with richer pattern data, thereby enabling a
multi-faceted understanding and analysis.

Visual mapping determines the way to visually
represent underlying data. It involves mapping data
and their values to certain marks (e.g., points,
lines, or areas) and visual channels (e.g., positions,
colors, or sizes, respectively). Foundation models
can enrich this phase by facilitating visualization
generation, including automatic content generation,
style generation, and interaction generation. These
models can learn patterns and user preferences from
datasets. Therefore, they can recommend or generate
optimal layouts that highlight important data trends.
Moreover, they can understand the context of the
data and suggest appropriate marks and visual
channels. For example, these models can determine
which color palettes best differentiate data categories
and which shapes represent specific data points
more effectively. By leveraging foundation models,
we can generate more insightful and contextually
relevant visual representations of the data. With
code generation capabilities, foundation models can
augment visualization with rich interactions.

View transformation involves converting abstract
visual representations into concrete pixels on a
screen. It is crucial to ensure that the final visual
representation is effectively communicated to users.
During this phase, foundation models play an
important role in visualization understanding,
which aims to enhance the understanding of
visualization content and communicate the underlying
information to users. First, the models contribute
to the distillation and abstraction of key information
from visual presentations. For example, a foundation
model can be finetuned to extract an adaptable
visualization template from a set of complex timeline
visualizations [73]. This involves recognizing visual
elements and understanding their hierarchical and
relational significance. Second, they amplify the users’
comprehension of visualizations by conveying key
information in an engaging, multi-modal format, such
as using a combination of natural language and visual
elements. For example, the models can provide clear
and accurate captions that the visualization designers
aim to communicate through the visualizations [75].

Visual perception is a cognitive process that occurs
in the mind. It interprets the visual representation
and translates the colors, shapes, and patterns
back into an understanding of the underlying data.
Moreover, users can interact with visualizations,
such as by zooming, panning, or selecting specific
data points. These interactions promote a deeper
understanding and reveal further insights. Here,
foundation models can achieve active engagement.
Active engagement enhances user interactions in two
aspects: direct and predictive. Direct interaction
enhancement employs foundation models to directly
simplify user interactions. For example, in the context
of three-dimensional (3D) scatterplots, foundation
models can refine the shape of a lasso selection
to make them more precise and contextually
relevant [80]. In addition to visual selections, these
models can interpret text descriptions provided
by users. For instance, when a user describes a
specific pattern or attribute, the models can process
the description and highlight the corresponding
visual patterns on display. Predictive interaction
enhancement uses foundation models to predict and
enhance user interactions for immediate responses
and broader data exploration insights. The predictive
capabilities of these models can be leveraged to
predict user actions within the visualizations. For
example, after observing user interactions with a
scatter plot, the models can be used to predict
where users are likely to click next, streamlining the
exploration process [81]. A more advanced application
of these models involves analyzing user interactions.
Based on how users interact with visualizations, the
models can predict the imminent actions of users as
well as their broader attributes, such as their likely
performance on a specific task or even specific aspects
of their personality [82].

Based on the aforementioned discussion, Table 2
summarizes the four main processes in FM4VIS.
In addition to overviewing existing efforts, Table 2
indicates potential research directions that few studies
have addressed.

3 Existing VIS4FM efforts

This section discusses recent works on VIS4FM with a
focus on data curation, training diagnosis, adaptation
steering, and model evaluation (Fig. 2). Table 1 lists
typical examples of each category.
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Table 2 Overview of the four main processes in FM4VIS

Process Tasks supported by FM Description Examples # Examples

Feature extraction Extract informative features
from unstructured data [52–58] 7

Feature extraction and
pattern recognition Pattern recognition Automatic identification of

patterns in data [59–66] 8

Content generation Generate desired
visualization content [67, 68] 2

Style generation Generate desired styles [69] 1
Visualization
generation

Interaction generation Generate desired interactions — 0

Content extraction Understand and extract
content from visualization [70–73] 4

Visualization
understanding Information communication Summarize and communicate

underlying information [74–76] 3

Direct interaction enhancement Directly enhance user interactions [77] 1Active
engagement Predictive interaction enhancement Understand user intent to

predict the next interaction — 0

3.1 Data curation
Visualization can simplify the data curation process in
four aspects: data generation, integration, selection,
and correction. Existing efforts have primarily focused
on data generation and correction.
3.1.1 Data generation
Data generation involves creating new data based
on existing data using large-scale machine learning
models trained on a large amount of data from
different domains. It plays a crucial role in
improving machine learning datasets by employing
techniques such as filling in missing values, balancing
class distributions, and augmenting sparse data
collections. Based on their content generation
capabilities, foundation models boost the efficiency
and effectiveness of generating datasets that can be
used to train, finetune, and test models. However,
these automatically generated datasets typically
contain quality issues, such as the presence of
undesirable repetitions and incorrect information
(e.g., incorrect annotations, out-of-range values, and
untrue relationships). Undesirable repetitions refer
to samples that are either highly similar or identical
to the seed samples used in dataset generation. These
repetitions may hinder the diversity of the generated
datasets. To address this, Reif et al. [20] developed
LinguisticLens, a visualization tool for identifying
potentially undesirable repetitions in a generated
dataset. This tool organizes similar sentences into
clusters based on syntactic and lexical information.
The clustering results allow users to analyze the

linguistic patterns and individual sentences in each
cluster more efficiently. Based on this comprehensive
understanding, users can determine whether similar
sentences are valuable enhancements or undesirable
repetitions.
3.1.2 Data correction
Data correction refers to the process of correcting
noisy annotations and untrue correlations between
inputs and outputs (shortcuts) within training
datasets. In the context of traditional deep learning
models, many visual analysis methods have been
developed to improve both the effectiveness and
efficiency of data correction processes, including
improving the instance representativeness [21–23] and
enhancing the annotation quality [24–26]. Given the
emphasis on data-centric issues, these methods are
readily transferable to enhancing the data quality in
the adaptation of foundation models. For example,
ShortCutLens [21] facilitates the identification of
shortcuts in natural language datasets. It overviews
potential shortcuts and allows users to analyze
samples associated with specific shortcuts. Once
identified, these shortcuts can be addressed by
constructing new samples, modifying existing ones, or
removing misleading ones. Another exemplary work
is DataDebugger, which was developed by Xiang et
al. [25]. DataDebugger employs a hierarchical
visualization to facilitate the examination and
correction of annotations (Fig. 4). Users can navigate
through the dataset, identify samples of interest, and
provide accurate annotations. These annotations are
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Fig. 4 DataDebugger interface. Reproduced with permission from
Ref. [25], c© IEEE 2019.

then propagated to correct other noisy annotations
using an annotation correction algorithm, thereby
reducing human efforts.

3.2 Training diagnosis

Based on the main analytical focus, existing VIS4FM
efforts in training diagnosis can be divided into three
categories: model explanation, performance diagnosis,
and efficiency diagnosis.
3.2.1 Model explanation
Model explanation refers to the process of inter-
preting the working mechanism of machine learning
models and how they make decisions. Recently,
transformer-based foundation models such as BERT
and VisionTransformer have achieved remarkable
performance across various tasks [27–30]. Although
the success of these models is often attributed to the
self-attention mechanism, the working mechanism
remains somewhat unclear. To address this, DeRose et
al. [28] developed Attention Flows to interpret how
attention flows across tokens and how it contributes
to the final prediction results. In addition, it supports
the comparison of attention flows between two
models to enable an analysis of their similarities and
differences. Li et al. [29] proposed a visual analysis
tool tailored for analyzing VisionTransformer. This
tool offers a multi-faceted examination of attention,
including the importance of different attention heads,
attention strengths across different image patches,
and attention patterns learned by individual heads.
While these methods are effective in interpreting
working mechanism based on individual samples,
analyzing patterns across multiple samples provides
a more comprehensive perspective. To this end,
Yeh et al. [30] introduced AttentionViz, which is
a tool designed to simultaneously examine self-

attention patterns across multiple input samples.
First, it projects queries and key vectors used by the
transformers into a shared space. By examining these
query–key interactions in the shared space, model
developers can better understand the behavior of
different attention heads.
3.2.2 Performance diagnosis
Performance diagnosis aims to troubleshoot issues
where models do not perform as expected and
understand the reasons for this. Compared with
model explanation, performance diagnosis focuses
more on diagnosing performance issues than
explaining the working mechanism of the model.
Visualization techniques provide an interactive
and intuitive environment for streamlining the
performance diagnosis process. For example, Li et
al. [31] developed DeepNLPVis to identify and
diagnose performance issues in deep natural language
processing models. DeepNLPVis introduces an
information-based sample interpretation method to
extract intra- and inter-word information. Corpus-,
sentence-, and word-level visualizations are tightly
integrated to visually explain the model behavior.
With a comprehensive understanding of how the
model processes inputs, model developers can
efficiently identify and address performance issues.
Moreover, SliceTeller [32] allows model developers
to diagnose model performance on different subsets
of validation data. First, SliceTeller automatically
constructs several subsets of data with potential
performance issues and presents them for performance
diagnosis. After the model developers identify the
critical subsets for further optimization, SliceTeller
estimates the performance changes across different
subsets. This enables developers to compare trade-
offs and decide whether to accept the optimization.
3.2.3 Efficiency diagnosis
Unlike the performance diagnosis, an efficiency
diagnosis focuses on identifying bottlenecks that slow
the training speed or consume unnecessary resources
during training. As foundation models continue to
increase in scale, the importance of the efficiency
diagnosis becomes increasingly critical. A widely used
strategy for accelerating the training of a foundation
model is to parallelize the process in a distributed
cluster. Despite the effectiveness, diagnosing the
parallel training process is challenging due to the
intricate nature of parallelization strategies and the
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large volume of profiling data, such as execution time,
resource utilization, and communication overhead.
To address these issues, Wei et al. [33] proposed
a visual analysis method for diagnosing parallel
training processes. This method integrates detailed
information regarding the parallelization strategy into
a computational graph, which is visualized using
a directed acyclic graph layout. To facilitate the
analysis of the profiling data, Wei et al. designed an
enhanced Marey’s graph to visualize the execution
time of the network layers, peak memory of different
devices, and inter-device communication latency. In
addition, an aggregation method is employed to
handle the large volume of profiling data within
Marey’s graph.
3.3 Adaptation steering

Based on the methods used to align models with
human preferences, existing VIS4FM efforts in
adaptation steering can be divided into three
categories: model finetuning, prompt engineering,
and alignment via human feedback.
3.3.1 Model finetuning
Model finetuning is a widely used technique for
adapting foundation models to downstream tasks
by updating the model parameters using task-
specific training data. In model finetuning, model
developers aim to understand the knowledge that
the models learn and whether this knowledge is
suitable for downstream tasks. Visualizations have
been demonstrated to be effective in providing
insights into model behavior [34, 50, 83] and
thus serve as a useful method for accelerating
the finetuning process. For example, Wang et
al. [34] developed CommonsenseVIS to analyze the
commonsense knowledge learned by the models
and whether the knowledge is used in the models’
reasoning. First, it employs a knowledge graph to
extract the commonsense knowledge from the input
data. The alignment of the model behavior with
human reasoning is then achieved using the overlap
between the extracted and learned knowledge. Using
interactive visualizations for the alignment, model
developers can effectively understand and diagnose
issues for which the models underperform in terms of
learning. In addition to the finetuning of foundation
models, a growing trend has been observed toward
parameter-efficient methods, such as the adapter [84]
and low-rank adaptation (LoRA) [85] methods.

These methods add task-specific parameters to the
foundation models and train only new parameters.
This reduces the training complexity and allows
the adapters and LoRA modules to learn task-
specific knowledge without modifying the weights
of the foundation models. Consequently, many
publicly available adapters and LoRA modules have
been finetuned for different tasks and datasets [86].
Understanding what task-specific knowledge is
acquired can help model developers in selecting an
appropriate adapter or LoRA module for their tasks.
For example, Sevastjanova et al. [35] proposed a visual
analysis method to compare the knowledge learned
by different adapters. The method integrates three
types of explanation methods: concept embedding
similarity, concept embedding projection, and concept
prediction similarity. These methods are used
to compare the adapters. This method enables
developers to make informed decisions regarding
which adapter best suits the downstream task of
interest.
3.3.2 Prompt engineering
Instead of using traditional finetuning methods,
foundation models can be adapted for downstream
tasks using prompting techniques. A prompt is
a natural language description of a task that
makes the task suitable for foundation models.
The prompt can significantly influence the model
performance, and designing a high-performing
prompt requires deep expertise. To alleviate the
burden of manually crafting prompts, Strobelt et
al. [36] developed PromptIDE, which allows users
to construct different prompts, compare their
performance, and interactively refine them. Figure 5
illustrates the basic workflow. First, the range of
variables in a prompt template is specified, and
a comprehensive set of prompts that spans all
potential combinations can then be generated. The

Fig. 5 Prompt engineering workflow in PromptIDE.
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generated prompts are evaluated using a small set of
validation data with ground-truth labels to provide
quantitative measures. Users can then compare their
performance and refine the prompt template or a
single prompt. Similarly, ScatterShot [37] focuses
on helping users interactively select informative
samples and add them to the prompts. It employs
a clustering technique to organize samples into
clusters based on task-specific key phrases and
offers a performance estimation for each cluster.
Low-performance clusters are prioritized for further
exploration and sample selection. For tasks without
clear quantitative measures, such as text-to-image
generation, visualization can assist in exploring
the relationships between the input prompts and
output results. For example, PromptMagician [38]
streamlines the interactive refinement of text prompts
in text-to-image generation tasks. It employs a
prompt-recommendation model to retrieve prompt-
image pairs that are similar to the input prompt
from a preexisting database. The retrieved pairs
are visualized in a two-dimensional (2D) space
using t-distributed stochastic neighbor embedding
(t-SNE) and organized using hierarchical clustering
for efficient exploration. Important and relevant
prompt keywords are extracted to facilitate prompt
refinement. Recently, the chain-of-thought technique
has emerged as an effective strategy to enhance
the performance of foundation models for handling
complex tasks [87]. A chain of thought is a series
of prompts that breaks down a complex task into
a sequence of more manageable sub-tasks. Visual
analysis tools can aid users with limited experience
in authoring their own chains [39, 40]. For example,
Wu et al. [40] developed AIChains, which supports
eight primitive operations that are well suited
for language models. An interactive interface was
designed to facilitate the examination and the analysis
of the chain structure and model outputs. Based on
the analysis, users can adjust different granularities,
ranging from refinement within an individual prompt
to modifying the intermediate model outputs and
even restructuring the entire chain.
3.3.3 Alignment via human feedback
Unlike model finetuning and prompt engineering,
model alignment directly utilizes human feedback
to steer the model outputs toward human preferences.
Visualization techniques are suitable for collecting

human feedback and communicating the associated
changes in the model output. Through this human-
in-the-loop process, users can iteratively align the
model outputs with their preferences. Recently,
TaleBrush [41] was developed to support writers
in iteratively crafting stories. TaleBrush employs
line-sketching interactions along with a GPT-based
language model to support writers in dictating
character fortune plots in line with the creative goals
of the writers. Writers can refine the generated
narrative by editing the text and modifying the initial
sketches.

3.4 Model evaluation

Foundation models can be evaluated quantitatively
and qualitatively.

Quantitative evaluation. Quantitative evaluation
employs predefined quantitative measures to evaluate
the model performance. Various visualization tech-
niques have been developed to enrich the presentation
of these quantitative measures, thereby offering a
comprehensive and intuitive understanding of the
model performance [42–44]. For example, Görtler et
al. [44] developed Neo, which extends traditional
confusion matrices to facilitate the evaluation of
classification tasks with complex label structures.
Users can efficiently explore confusion matrices
related to hierarchical or multi-output labels and
inspect model confusion patterns.

Qualitative evaluation. Qualitative evaluation
lacks clear metrics and often rely on visualizations
to integrate human judgment into the evaluation
process. For example, Chen et al. [45] developed
Uni-Evaluator, a unified evaluation method suitable
for various tasks in computer vision, including
image classification, object detection, and instance
segmentation (Fig. 6). In addition to revealing class-

Fig. 6 Uni-Evaluator interface. Reproduced with permission from
Ref. [45], c© IEEE 2024.
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level confusion patterns, Uni-Evaluator facilitates
fine-grained examinations of the model capabilities
and behaviors at the sample level. For example, when
users visually compare model-generated segmentation
masks with ground-truth masks, they tend to observe
inadequate segmentations of the helicopter rotors.
These rotors, due to their thin and limited surface
area, are often overlooked or inadequately segmented
in the model output. This observation has guided the
enhancement of model performance by incorporating
a boundary-based loss specifically for helicopter
segmentations.

4 Existing FM4VIS efforts

This section introduces recent efforts on FM4VIS with
a focus on feature extraction and pattern recognition,
visualization generation, visualization understanding,
and active engagement (Fig. 3). Table 2 lists typical
examples of each category.
4.1 Feature extraction and pattern recognition

4.1.1 Feature extraction
Feature extraction transforms unstructured data,
such as text and images, into semantic feature
vectors. Foundation models pretrained on vast
datasets often outperform traditional models in
this task [1]. These high-quality semantic feature
vectors facilitate the advancement of visualization
techniques. Methods for enhancing visualizations
include querying relevant data [52–57] and enriching
metadata [58]. For example, Erato [52] is a human–
machine cooperative system for generating data
stories (Fig. 7). Once users determine key data facts
for the story that they want to focus on, Erato utilizes
an interpolation algorithm to generate intermediate
data facts that smoothly connect the different key
data facts. To achieve this, a BERT model is

Fig. 7 Erato interface. Reproduced with permission from Ref. [52],
c© IEEE 2022.

finetuned to generate high-quality fact embeddings for
fact interpolation. Similarly, MetaGlyph [53] utilizes
a pretrained sentence-BERT to transform both the
descriptions of data attributes and data topics into
semantic features. MetaGlyph then calculates the
distances between these features and ranks the
attributes according to the distances between the
attribute descriptions and data topics. Attributes
with smaller distances are prioritized for selection
and subsequently visualized.
4.1.2 Pattern recognition
Pattern recognition utilizes the extracted features
to identify a range of patterns that enhance both
understanding and analysis. Similar to existing
methods that employ traditional machine learning
models, foundation models are used to perform
various tasks, such as classification [59–63], object
detection [64, 65], and relationship extraction [66].
For example, LegalVis [59] employs a finetuned
Longformer model to identify binding precedents
(past legal decisions made by higher courts) in legal
documents. Similarly, Teddy [60] utilizes a finetuned
BERT model to extract fine-grained opinions (e.g.,
cleanliness and service) from review text and convey
them to data scientists.

4.2 Visualization generation

Foundation models have been used to facilitate the
visualization generation process by either directly
generating visualization content (e.g., visualization
types, data encodings, and annotations) [67, 68] or
generating visualization styles (e.g., color schemes,
layout styles, and typographies) [69].
4.2.1 Content generation
Content generation uses foundation models to
produce desired visualization content. For example,
Liu et al. [67] developed ADVISor to generate
visualizations with annotations given tabular data
and natural language questions. In ADVISor, a BERT
model is first finetuned to extract the features of both
the questions and table heads. Subsequently, several
lightweight models are trained to determine the
selected attributes, aggregation types, visualization
types, and annotations that best address target
questions. A corresponding visualization is generated
based on this information. Data Player [68] is
another representative method designed to simplify
the creation of data videos based on static input
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visualizations and corresponding narrative text. As
illustrated in Fig. 8, Data Player uses OpenAI gpt-3.5-
turbo and a large language model (LLM) to establish
semantic connections between the visualization
components and narrative entities. These semantic
connections are then used to generate narration–
animation interplay in the resulting data videos.
4.2.2 Style generation
Foundation models have been leveraged to produce
desired visualization styles. Xiao et al. [69] developed
ChartSpark to simplify the generation of pictorial
chart visualizations. ChartSpark employs a text-to-
image diffusion model to generate the corresponding
visualization style for given semantic text prompts.
In addition, it can take a chart image as an additional
input to ensure that the generated visualization
approximates the given chart. To further enhance the
quality of the final output, users can utilize image-to-
image generation techniques to improve the harmony
and consistency of the generated charts.

4.3 Visualization understanding

Existing efforts on visual understanding can be
classified into two categories: content extraction and
information communication.
4.3.1 Content extraction
Content extraction focuses on extracting important
content from visualizations, including data content
[70–72] and visualization templates [73]. In terms of
extracting data content from visualizations, Ma et
al. [71] finetuned several models to classify chart types,
analyze legends, and detect different visual elements
such as boxes and points. The detected elements are
converted back into data values based on the legend
information. To extract visualization templates,
Chen et al. [73] utilized deep learning models to
segment and extract visual elements from timeline
infographics. The extracted graphical elements are

Fig. 8 Text-visual linking process in Data Player.

used as visualization templates to create similar
infographics using different data.
4.3.2 Information communication
With the capability of content generation, foundation
models serve as valuable tools for communicating
extracted content and underlying information to
users [74–76]. For example, Sultanum and Srinivasan [74]
proposed DataTales to create data-driven articles
based on data visualizations. DataTales uses charts as
input and leverages OpenAI gpt-3.5-turbo to generate
corresponding narratives and titles. These generated
narratives are then linked back to the original chart to
improve the readability and overall comprehension of
the given data. Liu et al. [75] developed AutoTitle, an
interactive tool designed to generate meaningful titles
for visualizations. It first extracts the underlying data
from the visualizations and then computes high-level
facts through operations such as aggregation and
comparison. Based on the computed facts, a T5 [88]
foundation model is finetuned to generate fluent and
informative natural language descriptions.

4.4 Active engagement

Foundation models offer a promising way for
understanding user intent and refining interaction
results. For example, entering text without input
devices in a virtual environment is challenging and
typically involves many errors. By leveraging a BERT
model to re-rank possible word alternatives in a user’s
text input, the word error rate can be significantly
reduced [77]. In addition to refining the interaction
results, some efforts have been made to simplify
the interaction process, for example, by employing
natural language [89].

5 Research opportunities

This section explores potential avenues for research
on VIS4FM and FM4VIS. In particular, we focus
on identifying underexplored, potential, and new
challenges to offer a straightforward roadmap for
future studies.
5.1 VIS4FM

5.1.1 Data curation
Data generation. Foundation models have demon-
strated a capability of generating training datasets for
specific tasks. Automatically generated datasets may
contain several quality issues, including undesirable



410 W. Yang, M. Liu, Z. Wang, et al.

repetition, low coverage, and incorrect annotations.
Although an initial effort to address undesirable
repetition has been made [20], the issues of
low coverage and incorrect annotations remain
underexplored. For the issue of low coverage,
visualizations offer a useful manner of exploring the
distribution of generated datasets and identifying
regions with insufficient training samples. Based on
the findings, users can interactively steer the data
generation strategies to generate more samples in
those regions. For the issue of incorrect annotations,
visualizations serve as a powerful tool for users
to enhance the data quality. For example, with
appropriate visualizations, specific subsets in which
the samples tend to contain noisy annotations can be
easily identified. These corrections provide valuable
feedback for the foundation models and contribute
to the generation of more accurate data. In addition,
incorrect annotations can be addressed via data
selection, which is facilitated by visualizations and is
discussed in the following.

Data integration. Foundation model training
typically requires the collection and preprocessing
of vast amounts of data from multiple sources.
Merging these heterogeneous data into a coherent and
high-quality dataset poses considerable complexities,
such as handling data inconsistencies and resolving
semantic differences across different sources. These
issues often lead to improvements in human
feedback during the integration process. In this
context, visualization techniques are typically
crucial in facilitating more efficient data integration
and governance processes. One interesting avenue
for future research is the development of a
visualization-guided preprocessing framework that
enables interactive adjustments to the preprocessing
procedure and continuous monitoring of data integrity.
Another promising avenue is the investigation of
visualization techniques that can simultaneously
handle the large-scale and heterogeneous natures
of training data. These techniques would facilitate
comparisons of data distributions from different
sources and the identification of inconsistencies.

Data selection. The training and adaptation
of foundation models are computationally intense
processes and typically require millions or even billions
of training data [8]. This large-scale data requirement
introduces several complexities, including data

storage, computational power, and processing time.
Furthermore, the training of foundation models is
becoming a serious source of carbon emissions that
threaten our environment [90]. Recent studies have
shown that selecting a subset of data for training can
achieve comparable or even better performance [88,
91]. These findings suggest the possibility of reducing
computational and environmental costs associated
with model training. Visualization is a valuable tool
for exploring large-scale datasets and selecting high-
quality training data [92, 93]. However, two major
challenges must be addressed.

The first challenge is scalability. This is particularly
important in the context of foundation models. The
large amount of data for training and finetuning
these models is too large to fit in memory, increasing
the difficulty of the simultaneous processing and
visualizing of all the data. This not only calls for
out-of-memory sampling techniques but also poses
real-time interaction challenges for visualization. Out-
of-memory sampling techniques can be used to present
an overview of the data distribution. This allows users
to examine the general landscape quickly and identify
regions that warrant closer inspection. Users can
then zoom in on these targeted regions for a more
granular analysis. Because new data are not loaded
from memory, studying how to support real-time
interactions is worthwhile.

The second challenge stems from the unannotated
and unstructured nature of training data. Most
training data for foundation models, such as images or
text crawled from websites, are unstructured without
annotations. Their unannotated nature increases the
difficulty in evaluating the quality of training data
and selecting high-quality samples for training. One
possible solution is to design multiple metrics to
visually summarize the data characteristics from
different perspectives. The unstructured nature of
the data poses difficulties for users in quickly
understanding the content of the samples. Innovative
visualizations of the data are then required to
alleviate the cognitive load. In addition, multi-modal
data have been widely used in training foundation
models. However, the visualization of alignments
between different modalities remains underexplored
and deserves further investigation.

The selection of test data shares challenges with
the selection of training data, including scalability
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and the unstructured nature of the data. However,
some differences are noteworthy. The test data
are primarily intended to faithfully convey the
performance of the foundation models while exposing
their potential weaknesses. Therefore, the test data
must cover both the common samples that models
process regularly and “edge case” samples where
the models may fail. Visualization techniques are
suitable for examining the selection balance between
the two types of samples. Therefore, the integration
of visualization techniques with the subset selection
method is worth exploring for a well-balanced
selection.
5.1.2 Training diagnosis
Model explanation. The intrinsic nature of
foundation models is defined by their vast number of
parameters. Although this vastness is the source
of the models’ capabilities, it also makes model
interpretation difficult. Understanding the complex
interactions, transformations, and computations
within these parameters is challenging. When a
foundation model produces an output, the output
is the result of a cascade of intricate operations
influenced by millions, or even billions, of parameters.
Tracing back these operations to identify the exact
reasoning or mechanism is similar to navigating a
vast, complex maze without a map. As a model
increases in size and complexity, understanding the
specific factors or processes contributing to the output
becomes increasingly difficult.

The aforementioned challenge posed by the scale
and complexity of foundation models requires
innovative visualization solutions to incorporate
human knowledge into the analysis process. These
visualization tools can serve as “lenses” that allow
users to investigate the intricacies of these models
and offer insights that can be understood intuitively.
In addition, exploration based on rich interaction
techniques is important for explaining foundation
models. These exploration methods aim to distill
the complex behaviors of foundation models into
more understandable forms without compromising
their essence. This might involve developing multi-
level interpretation mechanism where users can
select the granularity of the explanation, leverage
unsupervised techniques to automatically identify
the most salient features or operations driving the
model decisions, and present them for further analysis.

Multi-level interpretation mechanism is tailored to
offer explanations at varying levels of detail, from
high-level overviews to detailed, granular insights. At
the highest level, these explanations provide a general
summary of the models’ decision-making logic. This
is a surface-level interpretation. For example, for a
text generation task, a surface-level explanation might
state, “the model generated this sentence based on
the overall sentiment of the input”. In addition, it can
summarize associated statistics, such as confidence
and bias scores. The next level provides a component-
level interpretation that aims to explain the role
of specific model components, such as particular
layers or attention heads. For example, “the 10th
attention head focused primarily on the relationships
between the subject and object in the sentence”. The
deepest potential level can provide a parameter-level
interpretation. This enables the examination of the
influence and interactions of specific parameters or
groups of parameters. This can involve visualizing
the weights, gradients, or activations associated
with particular tokens or features. Given the vast
amount of data present at each level, an effective
sampling method that can easily capture human
interest and display the corresponding data is in
demand. This has motivated studies on interactive
sampling strategies, which require the development
of interactive visualizations to facilitate the detection
of different user intents and provide tailored data
subsets. These strategies enable users to seamlessly
navigate through complex data layers. For example,
they probe deeper into specific areas of interest or
approach the issue by taking a step back for a broader
perspective to enhance the overall understanding of
the model functioning.

Online training diagnosis. With the increasing
complexity of foundation models, their training
time typically requires weeks or even months for
high-end GPUs. Traditional offline methods gather
relevant data after the training process and then feed
them to an analysis tool. This is less effective in
reducing unnecessary training trials. Moving the
visual analysis earlier in the model development
workflow can save vast amounts of time and
computational resources, such as by halting ineffective
and inefficient training. Therefore, visualization
techniques suitable for monitoring results in real time
and identifying performance and/or efficiency issues
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must be developed. Two interesting avenues warrant
further exploration.

The first promising avenue is to support an in-
depth analysis of model performance during model
training. Although some existing methods, such
as Tensorboard [94], have supported the online
monitoring of the training process, they consider
only high-level performance metrics, such as the
loss and prediction accuracy. These metrics are too
abstract to effectively troubleshoot why the model
does not perform as expected. To address this, it
is necessary to integrate advanced data and model
analysis modules into the visualizations to provide
richer information. By analyzing the sample content
and how the model processes it, model developers
can obtain more insights into the performance issues
and address them accordingly.

The second promising avenue lies in the mana-
gement of large-scale profiling data for online
diagnoses. Given the rapid generation of profiling
data and input/output overhead associated with
transferring data from GPU to memory or even disk
storage, storing all the data and then transferring
them to a visualization tool for analysis is an
impractical approach. In-situ visualization is a
promising method for addressing this issue [95].
It generates visualizations directly within the
computational environment in which the data
are generated. Although in-situ visualization has
been demonstrated to be useful for scientific
visualizations [96, 97], whether it can be employed
to streamline the efficiency diagnosis during model
training remains unexplored.
5.1.3 Adaptation steering
Model finetuning. After a foundation model is
finetuned for a specific task, it deviates from its
pretrained version. The changes can be in terms of
performance metrics as well as in model behavior,
such as in processing different types of inputs
and developing new input–output associations. By
analyzing these behavior changes, model developers
can understand how generic knowledge evolves into
task-specific knowledge and identify where the model
does not function as expected. Therefore, a promising
research opportunity lies in using visualizations to
effectively monitor behavioral changes and identify
abnormal behavior during the finetuning process.
With a deep understanding of behavioral changes,

model developers can identify when the model begins
to exhibit biases or vulnerabilities that downgrade
its performance. Subsequently, visualizations can
be leveraged as an efficient manner of interactively
steering the finetuning process, for example, by
adding more balanced or targeted data. This method
enhances the model performance as well as its
reliability and robustness.

Prompt engineering. Recent studies have shown
that providing high-quality examples within prompts
can significantly enhance the model performance.
This is known as the in-context learning ability [98].
In-context learning is a valuable component of prompt
engineering. In this setup, prompt engineering is
critical for curating and structuring examples that
can effectively guide the model. To fully leverage
the capabilities of foundation models and achieve
satisfactory performance, the examples provided
should be well suited for the downstream task.
However, generating high-quality examples requires
expertise and often involves iterative refinement.
This typically involves trial and error. Visualizations
offer an efficient method to facilitate this refinement
process by integrating humans into the analysis
loop [11, 13, 99]. One promising solution involves
employing visualizations to illustrate model responses
across different in-context examples. The insights
derived from the visualizations enable users to
evaluate the effectiveness of the constructed examples
and identify those most suitable for the current
task. Once informed, the users can then refine
the examples for improved performance. In addition
to interactively refining examples for each task,
another promising direction lies in using visualizations
to summarize the general principles for in-context
example selection [100]. In exploring different
subsets of examples and comparing them, users
can summarize the principles that determine which
types of examples are beneficial and which are not.
These principles contribute to a more systematic and
informed example selection to craft effective prompts
for the downstream task.

Alignment via human feedback. In the model
adaptation process, aligning the model behavior
with human preferences is essential. This alignment
improves the user experience by generating more
relevant responses and addresses ethical and societal
concerns [7]. Recently, reinforcement learning from
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human feedback has been shown to be effective in
aligning model behavior with human preferences [7].
This method first trains a reward model directly
from human feedback, which predicts whether the
response aligns with human preferences (high reward)
or not (low reward). Subsequently, this reward
information guides the optimization of foundation
models through reinforcement learning. In this
process, the key lies in collecting high-quality human
feedback and using this data to train a reward
model that accurately captures human preferences.
Visualization techniques are suitable for both tasks.
Interactive visualizations have already demonstrated
their value in enhancing the process of collecting
human feedback. For example, existing research
on interactive data labeling has demonstrated the
effectiveness of employing visualization techniques to
facilitate the collection of human-generated data [101–
103]. Moreover, visualizations offer an efficient
method for diagnosing the training process of reward
models and interactively refining them through
additional human feedback. A tight integration of
human feedback into this process better aligns the
reward models with actual human preferences. This
integration leads to more accurate and reliable reward
information for the ongoing optimization of the
foundation model.

The primary challenges in this context are rooted in
the collection of high-quality human feedback and the
complexities of integrating visualization techniques
into reinforcement learning pipelines. First, collecting
high-quality human feedback is difficult, and this
difficulty is amplified when the data must be fed
to the reward model that drives the reinforcement
learning. Any errors or biases in the feedback
collection can result in skewed training or unreliable
models. Second, although visualization techniques
offer the opportunity to collect human-generated
data more effectively, seamlessly integrating these
techniques with reinforcement learning pipelines
presents additional complexities. Balancing real-
time interactions with computational efficiency in
a complex training process is another challenge that
must be overcome.

Model selection. Recently, there has been an
increasing trend among model developers to upload
their models with metadata (e.g., descriptions,
model architectures, and resource requirements) to
learnware markets [86, 104, 105]. The increasing

availability of publicly finetuned foundation models
has opened new avenues for the efficient development
of AI systems. When confronted with an AI task,
users can search for and select a preexisting model
that fits their needs from a learnware market.
However, without sufficient expertise, navigating
the expansive model space to determine the most
suitable foundation model can be challenging [106].
The challenge lies in facilitating user exploration
by capturing user requirements and recommending
high-performance models. One potential solution
is to employ visualization techniques to illustrate
the model space. Using these visualizations, users
can navigate the complex model space more
easily, understand model behaviors, identify model
limitations, and compare models from multiple
perspectives, such as performance scores and resource
requirements. Such a comprehensive understanding
and comparison enable the identification of an optimal
model for specific tasks.

5.1.4 Model evaluation
The field of visualization has extensively covered
quantitative evaluations. Therefore, we discuss the
research challenges and opportunities related to
qualitative evaluations.

Evaluating free-form outputs. Recently, foun-
dation models have achieved impressive performance
in various tasks, particularly in answering open-ended
questions without definitive ground-truth answers.
However, evaluating the quality of free-form model
responses remains challenging because of the high
variability in possible responses and the absence of
clear ground-truth answers. Addressing this challenge
requires human involvement during the evaluation
process. However, users are unable to manually
inspect and assess each model response because of
the huge volume of data. One possible solution
is to semi-automatically create rules for evaluating
model responses using active learning methods.
Visualizations enhance this process by offering a
comprehensive overview of the evaluation rules and
their associated model responses. Subsequently, users
can iteratively refine these rules based on their
preferences. This ultimately leads to more accurate
and reliable evaluations. Another potential solution
involves using visualizations to highlight responses
that are difficult for semi-automatic evaluation
methods and present them to users for manual review.
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To minimize redundancy and simplify this process, it
is essential to cluster a massive volume of responses
and summarize the clustering results in an intuitive
visual form.

Robustness. Many foundation models, such as
those in the GPT series [6, 8], are generative
models. Although these models demonstrate impre-
ssive generation abilities, they can misinterpret
inputs or generate off-target or incorrect outputs.
Such inconsistencies pose challenges for the reliable
deployment of these models, particularly in scenarios
where a single error can have significant consequences.
Therefore, clearly understanding their robustness is
an urgent need. With this information, users can
assess the performance of these models in different
situations and identify weak areas that require
finetuning to improve their performance [107, 108].

One possible solution is to construct a set of
input samples with perturbations and compare the
corresponding model responses with well-designed
visualizations. This method effectively illustrates
how small changes in the input can affect the
model output. This provides insights into the
robustness and sensitivity of the model. Visualizations
provide an important method used to identify
critical samples for closer examination, interactively
construct perturbated samples for deeper behavioral
insight, and summarize multiple model responses for
efficient analysis. Another solution involves analyzing
numerous input samples collected in real-world
scenarios to identify potential robustness issues.
Models are often deployed in complex environments,
where they encounter a wide range of inputs. The
manual examination of each robustness issue is
overwhelming. Visualizations offer an effective means
of exploring and filtering a set of similar inputs that
produce diverse results, which frequently indicates
robustness issues. Once these issues are identified,
visualization tools help enable “what–if” analyses.
These analyses examine how the model behaves under
various conditions and then identify specific areas
where its robustness could be improved.

Fairness. Given that foundation models are
increasingly being deployed in diverse cultural
contexts and used by diverse user groups, it is crucial
to prioritize culturally sensitive, ethically sound, and
socially aligned explanations provided by VIS4FM
techniques. Consequently, how VIS4FM techniques
can effectively navigate cross-cultural differences,

address ethical dilemmas, and assess broader societal
impacts are essential avenues of exploration. These
research directions are essential for advancing the
area of VIS4FM and ensuring responsible model
deployments.

First, cross-cultural differences significantly affect
how individuals perceive and interpret information.
Cultural factors such as language, beliefs, values, and
norms influence the understanding and acceptance
of foundation models and their explanations.
Therefore, how VIS4FM techniques account for and
adapt to cross-cultural differences in explanation
generation and presentation applications must be
investigated. This involves studying cultural biases
in foundation models, developing culture-aware
explanation methods, and conducting user studies in
diverse cultural contexts to assess the effectiveness
and appropriateness of VIS4FM techniques.

Second, ethical considerations are important for
the development and application of adapted models.
Visualization techniques should adhere to ethical
principles such as transparency, fairness, privacy, and
accountability. This includes addressing issues such
as algorithmic bias, discrimination, and the potential
impact of VIS4FM explanations on vulnerable
populations. Research on specific ethical frameworks
and guidelines for VIS4FM can help ensure that
adapted models with visual explanations are deployed
in a responsible and ethical manner.

5.2 FM4VIS

5.2.1 Feature extraction and pattern recognition
Foundation models offer two notable opportunities
that are unavailable with traditional machine learning
models. First, because of their training on more
diverse and extensive datasets, foundation models
typically generate features of higher quality than
those obtained from traditional machine learning
models. These features better reveal the underlying
patterns in the data, such as clusters [5, 60, 109]
and important insights [52, 110, 111]. These high-
quality features and patterns facilitate the design
of suitable visualizations used to analyze the data.
Second, previous feature extraction methods have
primarily focused on single-modality data, such as
latent Dirichlet allocation for textual data [112]
and the scale-invariant feature transform for image
data [113]. Recent research efforts have been made
to train multi-modality foundation models, such as
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CLIP [5], to map multi-modality data into one unified
feature space. This enables researchers to design a
unified visualization of multi-modal data to facilitate
the disclosure of inter-modality relationships within
the data.
5.2.2 Visualization generation
Prompted content generation. As widely studied
foundation models, LLMs have demonstrated a
capability to generate source code given natural
language prompts. For example, Code LLAMA
has exhibited state-of-the-art performance on several
public code generation benchmarks [114]. An
interesting avenue for future research could be
to democratize visualization designs by extending
these capabilities to automatically generate advanced
visualizations. By integrating well-known engines,
such as D3 [115] and matplotlib [116], this method
simplifies the process for individuals without prior
experience in visualization design. They can be used
to create advanced visual data representations and
address complex challenges. Although the execution
of this concept seems intuitive using existing public
APIs, it has not been fully implemented. Several
research efforts are still underway to improve
the quality of generated visualizations. First, the
development of a visualization-related instruction-
tuning dataset is critical. Currently, visualization
codes such as the D3 code comprise only a
small portion of the training corpus of LLMs.
Therefore, developing a dataset containing both
instructions and accompanying visualization code
is necessary to improve the performance of creating
different visualization components with LLMs. The
importance of visualization-specific datasets has been
demonstrated using existing automatic graph layout
methods [117]. Using such datasets and leveraging
advanced finetuning techniques, such as reinforcement
learning from human feedback, can significantly
enhance the code-generation capabilities of a model
in the visualization field. Second, prompt engineering
is essential to ensure that the generated visualizations
align with user intent. Existing research has shown
that different prompts substantially influence the
output generated by LLMs [118]. Therefore, effective
prompts are critical. To alleviate human efforts in the
tedious prompt curation process, recent techniques,
such as automatic prompt optimization [119], can be
leveraged.

Style generation. In computer vision, style
transfer refers to the technique of applying the
visual style of one image to the content of another
image [120]. This often involves a content and a
style image. The algorithm reconfigures the content
image to assume the artistic style of the style image.
For instance, StyleGAN [121] leverages generative
adversarial networks to distill the style cues from
reference images. The incorporation of style-based
generator layers offers fine-grained control over the
image attributes. This improves the quality and
versatility of the generated images. Currently, these
style-transfer models remain within the domain of
natural image generation. However, the principles
behind style transfer offer potential applications
beyond the visual arts. They open avenues to other
fields, such as visualization. This remains an open but
important research avenue for effectively harnessing
style transfer techniques in the field of visualization.
This extension would allow users to easily transfer
stylistic elements from one visualization to another.
Moreover, it serves as a valuable resource for users
with limited programming skills and facilitates the
creation of user-centric visualizations with minimal
efforts. This makes complex data more accessible
and understandable to a broader audience. A
critical challenge in this endeavor is preserving the
data integrity in transferred visualizations. Unlike
natural images, visualization is a visual form of
data. Therefore, a reliable representation of these
data is critical. Current style transfer techniques,
when applied to visualization, may introduce subtle
changes in visual elements, such as line-length
adjustments. This may lead to perceptual errors.
A promising research opportunity lies in adapting
style transfer models to incorporate the original data
used to generate visualizations, thereby ensuring data
integrity when transferring styles. Another challenge
is the automatic recommendation of styles, which is
complicated by the multifaceted intricacies of human
perception and divergent individual preferences. For
example, one user might prioritize clarity and
simplicity, whereas another might focus on intricate
details and vibrant color schemes. Additionally,
cultural background, professional training, and mood
can influence what a user finds engaging or easy to
interpret. These varying factors make the automatic
process of recommending styles a complex endeavor
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because the system must account for a wide range of
subjective preferences.

Interaction generation. Interaction enables
users to tailor their views according to specific
information requirements. This serves as a cor-
nerstone for effective data exploration and
analysis. However, creating intuitive and responsive
interactions is a challenge that requires expertise
in both visualization techniques and programming.
The code-generation capabilities of foundation
models offer significant opportunities. An interesting
avenue for research is the simplified interaction
design. As with the aforementioned prompted
content generation, users can implement basic
interactions by describing their intent using natural
language. The challenge lies in the ambiguities
that natural languages often present [18]. This
increases the difficulty of describing complex inter-
active functionalities clearly. Therefore, extending
foundation models to accept other types of inputs,
such as sketches and video examples, is an exciting
opportunity for producing more accurate interaction
designs. At a more advanced level, foundation models
have the potential to simplify the programming of
complex interactions such as multi-stage animation
scheduling and sophisticated visual effects. However,
ensuring that the generated code satisfies quality
standards remains an issue. Hence, a potential
avenue for future research is the development of
automatic quality assurance mechanisms that can
evaluate and refine the code generated by foundation
models.
5.2.3 Visualization understanding
Content extraction. Previous research has high-
lighted the enhanced reasoning capabilities inherent
in foundation models [6]. Using these capabilities,
visualization researchers can adapt foundation models
to comprehend complex visualizations, such as
node-link diagrams and tree maps, and extract
key information for in-depth analyses [122]. For
example, when presented with a node-link diagram
representing a complex social network, foundation
models can effectively identify key information
such as influential users, sub-communities, and
their connections. Descriptive captions and concise
summaries of this information can be generated
and presented alongside visualizations. This greatly
facilitates comprehension. A critical challenge in

adapting current foundation models to understand
complex visualizations is the lack of domain-specific
data. Currently, existing public datasets in the
visualization field often focus on simple charts such
as bar and line charts [15]. Therefore, the creation of
a public dataset that contains complex visualizations
and extracted insights is critical. Another challenge
lies in identifying contextually relevant information
that matches the analytical focus. Interactive
visualizations often excel at conveying useful patterns
embedded in large amounts of data. For example,
the visualization of a social network may present
multiple interesting sub-communities that deserve
exploration. A tailored summary of the sub-
communities of interest is often more beneficial than a
generic overview of the entire network. Consequently,
the task of capturing the analytical focus of users
and dynamically extracting relevant patterns and
tailored summaries for visualization has emerged as
a promising avenue for future investigation.

Visual-question-answering-based communi-
cation. In computer vision, the development of
machine learning models to answer questions about
an image is an active research topic called visual
question answering [123]. Using foundation models,
users can engage in free-form and open-ended
dialog regarding visualizations. This alleviates the
cognitive load of understanding the visualizations.
To achieve this, two key aspects must be considered.
First, the model must have a robust linguistic
comprehension capability and possess a large amount
of knowledge to effectively address open-ended
questions regarding the visualizations. While some
foundation models have achieved remarkable accuracy
rates exceeding 90% on the CommonsenseQA
benchmark dataset [124], the ability to answer open-
ended questions regarding visualization remains a
topic for further study. Second, contextual awareness
is a critical component that enables a smooth,
multi-round dialog experience in foundation models.
Currently, chat-centric models such as ChatGPT have
demonstrated the ability to deliver desired results
conditioned on previous user prompts in the dialog [7].
Adding the underlying data to the prompts can help
the foundation model understand the visualizations
more precisely and answer numerical questions.
However, the incorporation of data into the prompts
raises scalability issues. Directly incorporating all
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the data into the prompts is inefficient, as well as
unfeasible given the large volume of data. To solve
this, the development of data abstraction techniques
(e.g., sampling [125, 126] and statistical summary) is
necessary to extract the most important data closely
linked to the generated visualizations.
5.2.4 Active engagement
Direct interaction enhancement. Currently,
several widely used interactions such as brushing
and zooming have been overlooked in the training
of foundation models. Consequently, these models
struggle to understand and enhance such user
interactions. Two potential solutions exist to
address this gap. A straightforward solution is to
convert these interactions into formats that current
foundation models can readily understand. For
example, mouse-click interactions can be converted
into textual descriptions and fed to LLMs. A more
promising solution involves training or adapting
foundation models to understand these interactions
directly. Encouragingly, initial efforts have
been made to enhance model capabilities in this
direction. For example, DragGAN enables users to
manipulate objects within images using drag-and-
drop interactions [127]. These efforts are notable
steps toward expanding the capabilities of interaction-
aware foundation models.

Predictive interaction enhancement. Recen-
tly, several initiatives have been implemented to
enhance the capabilities of foundation models by
creating foundation-model-based AI agents [128].
These AI agents are designed to mimic human
behaviors and typically include various modules, such
as perception, memory, planning, and reflection, each
of which is often supported by a foundation model.
Such agents can actively identify human feedback
and incorporate it into their reflection module, which
adapts their actions to subsequent steps based on this
feedback [129]. Employing these AI agents is feasible
for visual analyses. Traditional approaches require
domain experts to manually examine data through
visualizations and identify patterns through sequences
of interactions. This process is time-consuming and
expertise-dependent. By contrast, AI agents may
help simplify this analysis process by generating
similar interaction sequences based on the interaction
sequences performed by domain experts. However,
achieving productive collaboration between humans

and AI agents poses two challenges.
The first challenge lies in finetuning a foundation

model capable of automatically generating interaction
sequences to extract useful patterns. To alleviate the
efforts in interacting with different visual analysis
tools, foundation models can be used to generate
interaction sequences, which are then used to
automatically extract pattern candidates. Domain
experts need only examine these candidates and find
the most relevant patterns for further analysis. The
second challenge is the efficient adaptation of the
foundation model to specific visual analysis tools and
domain experts. To achieve this, the capacity of
the model must be boosted for in-context learning.
The foundation model should be able to learn from
a few example interaction sequences performed by
experts and then extract more patterns from similar
interactions.

6 Conclusions

The intersection of foundation models and visua-
lizations represents a substantial step in the
advancement of AI systems. On the one hand,
VIS4FM is crucial in explaining the complexities
of foundation models. This highlights the growing
need for transparency, explainability, fairness, and
robustness in the expanding role of AI. On the other
hand, FM4VIS provides new pathways for further
advances in visualization techniques. Although
integrating these two fields presents certain challenges,
their potential benefits and advancements are
undeniable. The challenges must be confronted
directly while embracing the vast opportunities that
lie ahead. This confluence not only promises a
brighter future for AI and visualization but also
encourages a sustained journey of discovery and
innovation in this emerging research topic.
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