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Abstract Recent studies have indicated that foundation
models, such as BERT and GPT, excel in adapting to a va-
riety of downstream tasks. This adaptability has established
them as the dominant force in building artificial intelligence
(AI) systems. As visualization techniques intersect with these
models, a new research paradigm emerges. This paper di-
vides these intersections into two main areas: visualizations
for foundation models (VIS4FM) and foundation models for
visualizations (FM4VIS). In VIS4FM, we explore the pri-
mary role of visualizations in understanding, refining, and
evaluating these intricate models. This addresses the pressing
need for transparency, explainability, fairness, and robustness.
Conversely, within FM4VIS, we highlight how foundation
models can be utilized to advance the visualization field it-
self. The confluence of foundation models and visualizations
holds great promise, but it also comes with its own set of
challenges. By highlighting these challenges and the growing
opportunities, this paper seeks to provide a starting point for
continued exploration in this promising avenue.

Keywords Visualization; artificial intelligence; machine
learning; foundation models; VIS4FM; FM4VIS

1 Introduction
A foundation model is a large-scale machine learning model
that is trained on a huge amount of data across different
domains, generally using self-supervision [1]. Notable ex-
amples of such models include BERT [2], InternImage [3],
CLIP [4], and GPT series models [5–7]. They typically pos-
sess parameters ranging from hundreds of millions to billions
or even trillions. These immense scales of parameters and
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Fig. 1 The intersections between visualizations and foundation
models are divided into two categories: VIS4FM and FM4VIS.

training data enable foundation models to capture general
knowledge about the world and serve as a “foundation” to
effectively adapt to a variety of downstream tasks, such as
natural language understanding, image recognition, question
answering, and image segmentation [1]. Due to their adapt-
ability, foundation models have become a leading force in
shaping the creation of versatile, high-performing AI sys-
tems across multiple applications. A recent OpenAI report
indicates that approximately 19% of jobs have undergone
considerable changes, with at least 50% of the tasks affected
by these models [8].

In the era of big data and artificial intelligence, there is
an increasing need to visualize large-scale datasets and ma-
chine learning models for efficient analysis. Recent studies
have indicated that incorporating humans into the analysis
process can make visualization techniques a critical bridge
to human comprehension of complex models [9–15]. This
enhanced human-AI collaboration facilitates effective insight
communication, informed decision-making, and improved AI
trustworthiness. When visualization techniques meet founda-
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tion models, a new research paradigm emerges. As shown in
Fig. 1, the intersections spark two promising research areas:
visualizations for foundation models (VIS4FM) and founda-
tion models for visualizations (FM4VIS). In VIS4FM, visual-
izations become an indispensable mechanism for facilitating
the understanding, analysis, and refinement of foundation
models. Conversely, FM4VIS focuses on how foundation
models can be employed to improve visualization techniques
by adapting them to different visualization-related tasks, from
automatically generating visualizations to communicating
richer insights with users. Embracing these intersections be-
tween foundation models and visualizations will advance both
fields and improve the collaboration between humans and AI.

While the confluence of foundation models and visualiza-
tions holds great potential, it also introduces challenges along
with opportunities. On the one hand, the increasing scale
and complexity of foundation models make them difficult to
analyze and interpret in traditional manners. This prompts
the need for novel visualization techniques tailored for these
large-scale models. On the other hand, while foundation mod-
els have shown the capability to unlock new dimensions of
visualization, it is still underexplored how to maximize their
capability and seamlessly integrate humans and AI in devel-
oping visualizations, which deserves further investigation.
This paper highlights both the challenges and opportunities
in this emerging research topic and invites further research.

2 Overview
The intersections between visualizations and foundation mod-
els contain two aspects: VIS4FM and FM4VIS.

2.1 VIS4FM

VIS4FM focuses on harnessing the power of visualization
tools to understand, refine, and evaluate these intricate foun-
dation models. As illustrated in Fig. 2, foundation models
undergo two primary phases: training and adaptation [1].

The data serves as the basis for building foundation models
and plays a critical role in determining the performance, relia-
bility, and ethical standing of the resulting models. Therefore,
it is crucial to ensure the data is of high quality, such as
broad coverage and precise annotation [42–44]. Given that
foundation models often have billions or even trillions of
parameters, they have the capacity to learn from vast datasets
and absorb both the beneficial and problematic aspects of
the data. Consequently, it is necessary to ensure that the data
is not only extensive but also of high quality. Visualizations
facilitate this data curation process from the following four
aspects. First, visualizations guide the data generation process

through real-time feedback on data coverage and correctness.
This allows for immediate adjustments to ensure that the
generated data adequately represents the intended scope and
has correct annotations. Second, visualizations are useful
for integrating heterogeneous data from multiple sources
into a coherent and high-quality dataset, which is required
to train successful foundation models. Third, visualizations
assist in data selection by offering a visual representation of
the dataset. This simplifies the identification of high-quality
samples. The feedback users provided through visualizations
is utilized to further refine the dataset. Fourth, visualizations
disclose anomalies or biases in the data and enable more
targeted corrections. This improves both the efficiency and
accuracy of correcting data.

Training is the initial phase in building foundation models.
During training, the model is trained on vast datasets, which
often include diverse and general information. This allows
the model to learn a wide range of features, patterns, and
knowledge from the data. In this phase, visualizations are
essential for training diagnosis. The first task, model expla-
nation, reveals the working mechanism of foundation models.
The second task, performance diagnosis, helps model devel-
opers identify the root cause for low performance and make
necessary refinements. The third task, efficiency diagnosis,
identifies bottlenecks that impair the training speed or waste
resources during training.

To optimize the performance for specific downstream tasks,
the foundation model is usually adapted using task-specific
datasets. This adaptation process refines the model’s general
knowledge to align more closely with the desired outputs of
the tasks. In this phase, visualizations are employed to facil-
itate the adaptation steering process in three ways: model
fine-tuning, prompt engineering, and alignment via human
feedback. In model fine-tuning, visualizations help under-
stand the knowledge learned by models and analyze whether
it is suitable for the downstream task. Model developers are
then able to compare multiple fine-tuned models and choose
the optimal one with a more comprehensive understanding.
In prompt engineering, visualizations streamline the trial-
and-error process in crafting effective prompts that lead to
the desired outputs. In alignment via human feedback, the
model is steered toward human preferences based on human
feedback. Visualizations serve two functions: they either aid
in collecting human feedback to improve training data or offer
an interactive platform to iteratively refine the model outputs.

In addition, visualizations serve as a useful technique in
enhancing the model evaluation process for both founda-
tion models and adapted models [41]. For the quantitative
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Fig. 2 How visualizations enhance foundation models along the learning pipeline.

Table 1 An overview of the four main processes in VIS4FM.

Process Tasks Supported by VIS Description Examples # Examples

Data Generation use visualizations to help
create or augment datasets [16] 1

Data Integration use visualizations to help
integrate data from multiple sources - 0

Data Selection interactively select representative samples
that align well with the tasks - 0Data

Curation

Data Correction interactively improve
the quality of datasets [17][18][19][20][21][22] 6

Model Explanation understand the working
mechanism of models [23][24][25][26] 4

Performance Diagnosis troubleshoot issues where models
do not perform as expected [27][28] 2Training

Diagnosis

Efficiency Diagnosis identify efficiency bottlenecks
in the training process [29] 1

Model Fine-tuning analyze what knowledge the
models learn during fine-tuning [30][31] 2

Prompt Engineering facilitate the construction
of effective prompts [32][33][34][35][36] 5Adaptation

Steering

Alignment via Human Feedback utilize human feedback
to steer model outputs [37] 1

Quantitative Evaluation use visualizations to present
quantitative measures [38][39][40] 3

Model
Evaluation Qualitative Evaluation use visualizations to evaluate and

interpret model capability and behaviors [41] 1

evaluation with clear metrics, visualizations offer users a
comprehensive and intuitive understanding of model per-
formance. In addition, given the adaptability of foundation
models to a variety of downstream applications, it is also
important to evaluate their performance across multiple tasks.
Well-designed visualizations facilitate an efficient compara-
tive analysis based on different metrics, which enables users
to select the optimal model or gain insights for further refine-
ment. For the qualitative evaluation that lacks clear metrics,
visualizations serve as a valuable tool for incorporating hu-
man judgment into the evaluation process. For example,
when dealing with open-ended questions that lack definitive
ground-truth answers, visualizations can summarize frequent

patterns in model-generated answers and provide an informa-
tive overview. This enables users to evaluate the quality of
these responses more efficiently. Once low-quality responses
are identified, various strategies can be employed to enhance
their quality. One such method is to enrich the dataset with
varied instances of the associated problematic questions.

Building on the above discussion, Table 1 offers a summary
of the four main processes in VIS4FM. This table not only
provides an outline of existing initiatives but also highlights
areas where future research could be beneficial, especially
where there has been little to no effort.
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Fig. 3 How foundation models enhance visualizations along the visualization pipeline.

Table 2 An overview of the four main processes in FM4VIS.

Process Tasks Supported by FM Description Examples # Examples

Feature Extraction extract informative features
from unstructured data

[45][46][47][48]
[49][50][51] 7

Feature Extraction and
Pattern Recognition Pattern Recognition automatic identification of

patterns in data
[52][53][54][55]
[56][57][58][59] 8

Content Generation generate desired
visualization content [60][61] 2

Style Generation generate desired styles [62] 1
Visualization
Generation

Interaction Generation generate desired interactions - 0

Content Extraction understand and extract
content from visualization [63][64][65][66] 4

Visualization
Understanding Information Communication summarize and communicate

underlying information [67][68][69] 3

Direct Interaction Enhancement directly enhance user interactions [70] 1Active
Engagement Predictive Interaction Enhancement understand user intent to

predict the next interaction - 0

2.2 FM4VIS

FM4VIS harnesses the power of foundation models to create
more adaptive, user-friendly, and intelligent visualization
techniques and systems. These efforts aim to further advance
the visualization field. As illustrated in Fig. 3, the visual-
ization pipeline transforms raw data into an interpretable
visual representation that allows users to interact with and
derive insights from the presented information [71]. FM4VIS
focuses on enhancing each phase in this pipeline: from data
transformation and visual mapping to view transformation
and visual perception.

Data transformation converts raw data into a format that is
more suitable for visualization and analysis. As foundation
models are trained on diverse datasets, they can be used to
perform feature extraction, which extracts meaningful fea-
tures from complex data for visualization. This is particularly
useful for unstructured data, such as text or images, where

traditional feature engineering methods often produce less
informative features [72]. Foundation models can perform
tasks like classification, relationship extraction, and object
detection to extract various patterns, such as relationships,
trends, and anomalies. These tasks provide visualization
tools with richer pattern data, and thus enable multi-faceted
understanding and analysis.

Visual mapping determines the way to visually represent
the underlying data. The key is to map the data and their
values to marks (e.g. , point, line, area) and visual channels
(e.g. , position, color, size), respectively. Foundation models
can enrich this phase by facilitating visualization generation,
including automatic content generation, style generation, and
interaction generation. These models have the ability to learn
patterns and user preferences from datasets, so they can rec-
ommend or generate optimal layouts that highlight important
data trends. Moreover, they can understand the context of the
data and suggest appropriate marks and visual channels. For
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example, these models can determine which color palettes
best differentiate data categories or decide which shapes rep-
resent specific data points more effectively. By leveraging
foundation models, more insightful and contextually relevant
visual representations of data can be generated. With the
capability of code generation, foundation models also have
the potential to augment visualizations with rich interactions.

The view transformation converts the abstract visual rep-
resentation into concrete pixels on a screen. It is a crucial
step to ensure that the final visual representation is effectively
communicated to users. During this phase, foundation mod-
els play an important role in visualization understanding,
which aims to enhance the understanding of the visualization
content and communicate the underlying information to users.
First, they contribute to distilling and abstracting key infor-
mation from visual presentations. For example, a foundation
model can be fine-tuned to extract an adaptable visualization
template from a set of complex timeline visualizations [66].
This involves not only recognizing visual elements, but also
understanding their hierarchical and relational significance.
Second, they amplify the user’s comprehension of visualiza-
tions by conveying the key information to users in an engaging,
multimodal format, such as a combination of natural language
with visual elements. For example, these models can provide
clear and accurate captions that the visualization designer
wants to communicate through the visualizations [68].

Visual perception is a cognitive process that happens in
users’ minds. It interprets the visual representation and trans-
lates the colors, shapes, and patterns back into an understand-
ing of the underlying data. Moreover, users can interact with
the visualizations, such as by zooming, panning, or selecting
specific data points, which promotes deeper understanding
and reveals further insights from the data. In this phase,
foundation models can achieve active engagement that en-
hances user interactions from two aspects: direct interaction
enhancement and predictive interaction enhancement. Direct
interaction enhancement employs foundation models to di-
rectly simplify user interactions. For example, in the context of
3D scatterplots, they can refine the shape of a lasso selection
to make them more precise and contextually relevant [73].
Beyond visual selections, these models can also interpret text
descriptions provided by users. For instance, when a user
describes a specific pattern or attribute, they can process this
description and highlight the corresponding visual patterns
on the display. Predictive interaction enhancement uses foun-
dation models to predict and enhance user interactions for
immediate responses and broader data exploration insights.
The predictive capabilities of these models can be harnessed

to predict user actions within visualizations. For example,
after observing user interactions with a scatter plot, they can
predict where the user is likely to click next to streamline
their exploration process [74]. Furthermore, a more advanced
utilization of these models is to analyze user interactions.
By observing how a user interacts with visualizations, they
can predict not only their imminent actions but also broader
attributes, such as their likely performance on a specific task
or even specific aspects of their personality [75].

Based on the aforementioned discussion, an overview of
the four main processes in FM4VIS is summarized in Table 2.
In addition to providing an overview of existing efforts, this
table also indicates potential future research directions where
little or no effort is made.

3 Existing VIS4FM Efforts
In this section, we introduce recent efforts in VIS4FM, with a
focus on data curation, training diagnosis, adaptation steering,
and model evaluation (Fig. 2). Typical examples in each
category are presented in Table 1.

3.1 Data Curation

Visualization can simplify the data curation process in four
aspects: data generation, data integration, data selection,
and data correction. Existing efforts mainly focus on data
generation and data correction.
Data Generation. Data generation is a process of creating
new data based on existing data by using large-scale machine
learning models that have been trained on a huge amount of
data from different domains. It plays a crucial role in im-
proving machine learning datasets by employing techniques
such as filling in missing values, balancing class distribu-
tions, and augmenting sparse data collections. With their
capabilities for content generation, foundation models boost
efficiency and effectiveness in generating datasets that can
be used to train, fine-tune, or test models. However, these
automatically generated datasets usually contain some quality
issues, such as the presence of undesirable repetitions and
incorrect information (e.g. , incorrect annotation, out-of-range
value, spurious relationship). Undesirable repetitions refer to
samples that are either highly similar or identical to the seed
samples used in dataset generation. These repetitions may
hinder the diversity of the generated dataset. To address this
issue, Reif et al. [16] developed LinguisticLens, a visualiza-
tion tool to identify potential undesirable repetitions in the
generated dataset. This tool organizes similar sentences into
clusters based on their syntactic and lexical information. The
clustering results allow users to analyze the linguistic patterns
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and individual sentences of each cluster more efficiently.
Based on a comprehensive understanding, they can determine
whether these similar sentences are valuable enhancements
or undesirable repetitions.
Data Correction. Data correction refers to the process of cor-
recting noisy annotation and spurious correlations between
inputs and outputs (shortcuts) within training datasets. In
the context of traditional deep learning models, many visual
analysis methods have been developed to improve both the
effectiveness and efficiency of such data correction processes,
including improving instance representativeness [17–19] and
enhancing annotation quality [20–22]. Given their emphasis
on data-centric issues, these methods are readily transferable
for enhancing data quality during the adaptation of founda-
tion models. For example, ShortCutLens [17] facilitates the
identification of shortcuts in natural language understanding
datasets. This tool provides an overview of potential shortcuts
and allows users to analyze samples associated with specific
shortcuts. Once identified, these shortcuts can be addressed
by constructing new samples, modifying existing ones, or
removing those that are misleading. Another exemplary work
is DataDebugger developed by Xiang et al. [21], which em-
ploys a hierarchical visualization to facilitate the examination
and correction of annotations. By using this visualization,
users can navigate through the dataset, identify the samples
of interest, and provide accurate annotations on them. These
annotations are then propagated to correct other noisy an-
notations using an annotation correction algorithm, thereby
reducing human efforts.

3.2 Training Diagnosis

Based on the main analytical focus, existing VIS4FM efforts in
training diagnosis can be divided into three categories: model
explanation, performance diagnosis, and efficiency diagnosis.
Model Explanation. Model explanation refers to the process
of interpreting the working mechanism of machine learn-
ing models and how they make decisions. In recent years,
transformer-based foundation models, such as BERT and
Vision Transformer, have achieved remarkable performance
across various tasks [23–26]. While the success of these mod-
els is often attributed to self-attention, its working mechanism
remains somewhat unclear. To bridge this gap, DeRose et
al. [24] developed Attention Flows to interpret how attention
flows across tokens and contributes to the final prediction
results. In addition, it supports the comparison of attention
flows between two models to enable the analysis of their
similarities and differences. Li et al. [25] proposed a visual

analysis tool tailored for analyzing Vision Transformer mod-
els. This tool offers a multi-faceted examination of attention,
including the importance of different attention heads, the
attention strengths across different image patches, and the
attention patterns that individual heads learn. While these
methods are effective in interpreting working mechanisms
based on individual samples, analyzing the patterns across
multiple samples provides a more comprehensive perspec-
tive. To this end, Yeh et al. [26] introduced AttentionViz, a
tool designed to examine the self-attention patterns across
multiple input samples simultaneously. It first projects the
query and key vectors used by transformer models into a
shared space. By examining these query-key interactions in
the shared space, model developers can better understand the
behavior of different attention heads.
Performance Diagnosis. Performance diagnosis aims to
troubleshoot issues where models do not perform as ex-
pected and understand the reason behind them. Compared
with the model explanation, it focuses more on diagnosing
performance issues rather than explaining model working
mechanisms. Visualization techniques provide an interac-
tive and intuitive environment to streamline the performance
diagnosis process. For example, Li et al. [27] developed
DeepNLPVis to identify and diagnose performance issues in
deep natural language processing models. DeepNLPVis in-
troduces an information-based sample interpretation method
to extract the intra-word and inter-word information. The
corpus-level, sentence-level, and word-level visualizations
are tightly integrated to visually explain model behavior.
With a comprehensive understanding of how the model pro-
cesses inputs, model developers can identify and address
performance issues efficiently. SliceTeller [28] allows model
developers to diagnose model performance on different sub-
sets of validation data. It first automatically constructs several
subsets of data with potential performance issues and presents
them for performance diagnosis. After model developers
identify critical subsets for further optimization, SliceTeller
estimates the performance changes across different subsets.
This enables developers to compare the trade-offs and decide
whether to accept the optimization.
Efficiency Diagnosis. In contrast to performance diagno-
sis, efficiency diagnosis focuses on identifying efficiency
bottlenecks that slow down the training speed or consume
unnecessary resources during the training process. As foun-
dation models continue to grow in scale, the importance of
the efficiency diagnosis becomes even more critical. A widely
used strategy to accelerate the training of a foundation model
is to parallelize the process in a distributed cluster. Despite its
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effectiveness, it is challenging to diagnose the parallel training
process due to the intricate nature of parallelization strategies
and the large volume of profiling data, such as execution time,
resource utilization, and communication overhead. To tackle
these issues, Wei et al. [29] proposed a visual analysis method
for diagnosing parallel training processes. This method inte-
grates detailed information about the parallelization strategy
into the computational graph, which is visualized using a
directed acyclic graph layout. To facilitate the analysis of the
profiling data, they developed an enhanced Marey’s graph to
visualize the execution time of operators, the peak memory
of different devices, and inter-device communication latency.
Additionally, an aggregation method is employed to handle
the large volume of profiling data within the Marey’s graph.

3.3 Adaptation Steering

Based on the methods to align models with human preferences,
existing VIS4FM efforts in adaptation steering can be divided
into three categories: model fine-tuning, prompt engineering,
and alignment via human feedback.
Model Fine-tuning. Model fine-tuning is a widely used
technique for adapting foundation models to downstream
tasks by updating model parameters using task-specific train-
ing data. In model fine-tuning, model developers want to
understand what knowledge the models learn and whether
this knowledge is suitable for the downstream tasks. Visu-
alizations have been shown effective in providing insights
into model behavior [30, 76, 77], so they serve as a useful
method to accelerate the fine-tuning process. For example,
Wang et al. [30] developed CommonsenseVIS to analyze what
commonsense knowledge the models learn and whether the
knowledge is used in model reasoning. It first employs a
knowledge graph to extract commonsense knowledge from
input data. The alignment of model behavior with human
reasoning is then achieved by utilizing the overlap between the
extracted knowledge and the knowledge learned by the model.
Through the use of interactive visualizations for the align-
ment, model developers can understand and diagnose issues
where the models fall short in learning effectively. Beyond
fine-tuning entire foundation models, there is a growing trend
toward parameter-efficient methods, such as adapter [78] and
low-rank adaptation (LoRA) [79]. These methods add a few
task-specific parameters to the foundation models and train
only those new parameters. By doing so, it not only reduces
training complexity but also allows adapters and LoRA mod-
ules to learn task-specific knowledge without modifying the
weights of foundation models. As a result, there are many
publicly available adapters and LoRA modules fine-tuned on

different tasks and datasets [80]. Understanding what task-
specific knowledge is learned can facilitate model developers
in selecting an appropriate adapter or LoRA module for their
tasks. For example, Sevastjanova et al. [31] proposed a visual
analysis method to support the comparison of knowledge
learned by different adapters. It integrates three types of
explanation methods: concept embedding similarity, concept
embedding projection, and concept prediction similarity, and
uses them to compare different adapters. This method enables
developers to make informed decisions about which adapter
best suits the downstream task of interest.
Prompt Engineering. Instead of traditional fine-tuning meth-
ods, foundation models can also be adapted to downstream
tasks using prompting techniques. A prompt is a natural lan-
guage description of the task, which makes the task suitable
for foundation models to handle. However, the choice of
prompts can significantly influence model performance, and
designing a high-performing prompt requires deep expertise.
To alleviate the burden of manually crafting prompts, Stro-
belt et al. [32] developed PromptIDE that facilitates users
in constructing different prompts, comparing their perfor-
mance, and interactively refining them. By specifying the
range of variables in a prompt template, a comprehensive
set of prompts is generated that spans all potential combina-
tions. These generated prompts are then evaluated on a small
set of validation data with ground-truth labels to provide
quantitative measures. Users can then compare their perfor-
mance and refine the prompt template or a single prompt.
In a similar vein, ScatterShot [33] focuses on helping users
interactively select informative samples and add them to the
prompt. It employs a clustering technique to organize samples
into clusters based on task-specific key phrases and offers
performance estimation for each cluster. Low-performance
clusters are prioritized for further exploration and sample se-
lection. For tasks without clear quantitative measures, such as
text-to-image generation, visualizations can assist in exploring
the relationships between input prompts and output results.
For example, PromptMagician [34] streamlines the interac-
tive refinement of text prompts in text-to-image generation
tasks. It employs a prompt recommendation model to retrieve
prompt-image pairs that are similar to the input prompt from
a pre-existing database. The retrieved pairs are visualized
in a 2D space using t-SNE and organized using hierarchical
clustering for efficient exploration. Furthermore, important
and relevant prompt keywords are also extracted to facilitate
the prompt refinement process. Recently, the chain-of-thought
technique has also emerged as an effective strategy for en-
hancing the performance of foundation models in handling
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complex tasks [81]. A chain of thought is a series of prompts
that breaks down a complex task into a sequence of more
manageable sub-tasks. Visual analysis tools can aid users with
limited experience in authoring their own chains [35, 36]. For
example, Wu et al. [36] developed AIChains, which supports
eight primitive operations well-suited for language models.
An interactive interface is designed to facilitate users in exam-
ining and analyzing the chain structure and the model outputs.
Based on the analysis, they can make adjustments in different
granularities, ranging from refinement within an individual
prompt to modifying the intermediate model outputs and even
restructuring the entire chain.
Alignment via Human Feedback. In contrast to model
fine-tuning and prompt engineering, model alignment directly
utilizes human feedback to steer model outputs toward
human preferences. Visualization techniques are suitable for
collecting human feedback and communicating the associated
changes in model output. Through this human-in-the-loop
process, users can iteratively align the model outputs with
their preferences. Recently, Talebrush [37] is developed
to support writers in iteratively crafting stories. It employs
line-sketching interactions alongside a GPT-based language
model to support writers in dictating character fortune in line
with their creative goals. Writers may refine the generated
narrative by editing the text or modifying their initial sketch.

3.4 Model Evaluation

Foundation models can be evaluated in two ways: quantitative
evaluation and qualitative evaluation.
Quantitative Evaluation. Quantitative evaluation employs
pre-defined quantitative measures to evaluate model perfor-
mance. Various visualization techniques have been developed
to enrich the presentation of these quantitative measures,
thereby offering a comprehensive and intuitive understand-
ing of model performance [38–40]. For example, Görtler et
al. [40] developed Neo, which extends traditional confusion
matrices to facilitate the evaluation of classification tasks
with complex label structures. Users can efficiently explore
confusion matrices related to hierarchical or multi-output
labels and then inspect model confusion patterns.
Qualitative Evaluation. Qualitative evaluation lacks clear
metrics and often relies on visualizations to integrate human
judgment into the evaluation process. For example, Chen et
al. [41] developed a unified evaluation method suitable
for a variety of tasks in computer vision, including image
classification, object detection, and instance segmentation.
In addition to revealing class-level confusion patterns, it also
facilitates a fine-grained examination of model capability

and behaviors at the sample level. For example, when users
visually compare the model-generated segmentation masks
with ground-truth masks, they frequently observe inadequate
segmentation of helicopter rotors. This observation guides
them to enhance model performance by incorporating a
boundary-based loss specifically for helicopter segmentation.

4 Existing FM4VIS Efforts
In this section, we introduce recent efforts in FM4VIS,
with a focus on feature extraction and pattern recognition,
visualization generation, visualization understanding, and
active engagement (Fig. 3). Typical examples in each
category are presented in Table 2.

4.1 Feature Extraction and Pattern Recognition

Feature Extraction. Feature extraction transforms unstruc-
tured data, such as text and images, into semantic feature
vectors. Foundation models, pre-trained on vast datasets,
often outperform traditional models in this task [1]. These
high-quality semantic feature vectors facilitate advanced vi-
sualization techniques. Methods for enhancing visualization
include querying relevant data [45–50] and enriching with
metadata [51]. For example, Erato [45] is a human-machine
cooperative system for generating data stories. Once users
decide on several key data facts of the story that they want to
focus on, Erato utilizes an interpolation algorithm to generate
intermediate data facts that smoothly connect different key
data facts. To achieve this, it fine-tunes a BERT model to
generate high-quality fact embedding for fact interpolation.
Similarly, MetaGlyph [46] utilizes a pre-trained sentence-
BERT to transform both the descriptions of data attributes and
data topics into semantic features. MetaGlyph then calculates
the distances between these features and ranks the attributes
according to the distances between the attribute descriptions
and the data topic. Those attributes with smaller distances are
prioritized to be selected and subsequently visualized.
Pattern Recognition. Pattern recognition utilizes extracted
features to identify a range of patterns that enhance both
understanding and analysis. Similar to existing methods that
employ traditional machine learning models, foundation mod-
els are also utilized to perform various tasks, such as classi-
fication [52–56], object detection [57, 58], and relationship
extraction [59]. For example, LegalVis [52] employs a fine-
tuned Longformer model to identify binding precedents (past
legal decisions made by higher courts) in legal documents.
Similarly, Teddy [53] utilizes a fine-tuned BERT model to
extract fine-grained opinions (e.g. , cleanliness, service) from
the review text and convey them to data scientists.
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4.2 Visualization Generation

Foundation models have been utilized to facilitate the vi-
sualization generation process by either directly generating
visualization content (e.g. , visualization type, data encoding,
annotations) [60, 61] or generating visualization styles (e.g. ,
color scheme, layout style, typography) [62].
Content Generation. Content generation uses foundation
models to produce desired visualization content. For example,
Liu et al. [60] developed ADVISor to generate visualizations
with annotations given tabular data and natural language
questions. In ADVISor, a BERT model is first fine-tuned to
extract the features of both questions and table heads. Building
upon these features, several lightweight models are trained to
decide the selected attributes, aggregation types, visualization
types, and annotations that best address the provided ques-
tions. The corresponding visualization is generated based on
this information. Data Player [61] is another representative
work designed to simplify the creation of data videos based
on the input static visualizations and the corresponding narra-
tion text. It uses OpenAI gpt-3.5-turbo to establish semantic
connections between visualization components and narrative
entities. These semantic connections are then utilized to gener-
ate narration-animation interplay in the resulting data videos.
Style Generation. Foundation models have also been lever-
aged to produce the desired visualization style. Xiao et al. [62]
developed ChartSpark to simplify the generation of chart vi-
sualizations in pictorial style. It employs a text-to-image
diffusion model to generate the corresponding visualization
style given the semantic text prompts. In addition, it can also
take a chart image as an additional input to ensure that the
generated visualization is in close alignment with the given
chart. To further enhance the quality of the final outputs, users
can utilize image-to-image generation techniques to improve
the harmony and consistency of the generated charts.

4.3 Visualization Understanding

Existing efforts can be classified into two categories: content
extraction and information communication.
Content Extraction. Content extraction focuses on extract-
ing important content from visualizations, including data
content [63–65] and visualization templates [66]. In the vein
of extracting data content from visualizations, Ma et al. [64]
fine-tuned several models to classify chart types, analyze
legends, and detect different visual elements such as boxes
and points. These detected elements are converted back into
data values based on the legend information. For extracting
visualization templates, Chen et al. [66] utilized deep learning
models to segment and extract visual elements from timeline

infographics. The extracted graphical elements are used as
visualization templates for creating similar infographics with
different data.
Information Communication. With the capability in content
generation, foundation models serve as valuable tools for
communicating the extracted content and underlying infor-
mation to users [67–69]. For example, Sultanum et al. [67]
proposed DataTales to create data-driven articles based on
data visualizations. It takes charts as inputs and leverages
OpenAI gpt-3.5-turbo to generate corresponding narratives
and titles. These generated narratives are then linked back
to the original chart to improve readability and the overall
comprehension of the data being presented. Liu et al. [68]
developed AutoTitle, an interactive tool designed to inter-
actively generate meaningful titles for visualizations. It first
extracts underlying data from the visualizations and then
computes high-level facts through operations like aggregation
and comparison. Based on the computed facts, a foundation
model T5 [82] is fine-tuned to generate fluent and informative
natural language descriptions.

4.4 Active Engagement

Foundation models offer a promising way to understand user
intent and refine their interaction results. For example, in
virtual environments, entering text without input devices is
challenging and usually contains many errors. By leveraging a
BERT model to re-rank possible word alternatives in the user’s
text input, the word error rate is significantly reduced [70]. In
addition to refining the interaction results, some efforts aim to
simplify the interaction process, for example, by employing
natural language [83].

5 Research Opportunities
In this section, we explore potential avenues for research
in both VIS4FM and FM4VIS. Specifically, we focus on
identifying underexplored potential and new challenges to
offer a straightforward roadmap for future studies.

5.1 VIS4FM
5.1.1 Data Curation
Data Generation. Foundation models have shown the ca-
pability to generate training datasets for specific tasks. The
automatically generated datasets may contain several quality
issues, including undesirable repetition, low coverage, and
incorrect annotations. Although there is an initial effort to
address undesirable repetition [16], the issues of low coverage
and incorrect annotations are still underexplored. For the
issue of low coverage, visualizations offer a useful way to
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explore the distribution of the generated datasets and identify
the regions with insufficient training samples. Based on the
findings, users can interactively steer the data generation strat-
egy to generate more samples in those regions. For the issue
of incorrect annotations, visualizations serve as a powerful
tool for users to enhance data quality. For example, with
appropriate visualizations, they can easily identify specific
subsets where the samples tend to contain noisy annotations.
These corrections then act as valuable feedback for foundation
models and contribute to the generation of more accurate
data. In addition, the issue of incorrect annotations can also
be addressed by using data selection, which is also facilitated
by visualizations and introduced below.
Data Integration. Foundation model training usually requires
the collection and preprocessing of vast amounts of data from
multiple sources. Merging these heterogeneous data into a
coherent and high-quality dataset poses considerable com-
plexities, such as handling data inconsistencies and resolving
semantic differences across different sources. These issues
often see improvement through human feedback during the
integration process. In this context, visualization techniques
usually play a crucial role in facilitating a more efficient data
integration and governance process. One interesting avenue
for future research is to develop a visualization-guided prepro-
cessing framework that enables interactive adjustments to the
preprocessing procedure and continuous monitoring of data
integrity. Another promising avenue lies in the investigation
of novel visualization techniques that simultaneously handle
both the large-scale and heterogeneous nature of training data.
These techniques would make it easier to compare data dis-
tributions from different sources and identify inconsistencies.
Data Selection. The training and adaptation of foundation
models are computationally intense and usually require mil-
lions or even billions of training data [7]. This large-scale
data requirement introduces complexities in several aspects,
including data storage, computational power, and processing
time. Furthermore, training of foundation models is becom-
ing a serious source of carbon emissions threatening our
environment [84]. Recent studies have shown that select-
ing a subset of data for training can achieve comparable or
even better performance [82, 85]. These findings suggest the
possibility of reducing the computational and environmental
costs associated with model training. Visualizations serve as
valuable tools for exploring large-scale datasets and selecting
high-quality training data [86, 87]. However, there are two
major challenges that need to be addressed.

The first challenge revolves around scalability, which is
particularly significant in the context of foundation models.

The huge amount of data for training and fine-tuning these
models is too big to fit in memory and makes it difficult to
process and visualize all the data at once. This not only calls for
out-of-memory sampling techniques but also poses real-time
interaction challenges for visualization. One possible solution
is to initially present an overview of the data distribution
using these out-of-memory sampling techniques. This method
allows users to quickly examine the general landscape and
identify regions that warrant closer inspection. Users can
then zoom into these targeted regions for a more granular
analysis. As the new data is not loaded from memory, it is
worth studying how to support real-time interactions.

The second challenge stems from the unannotated and
unstructured nature of the training data. Most training data
for foundation models are unstructured data without anno-
tation, such as images or text crawled from websites. Their
unannotated nature makes it difficult to evaluate the quality
of training data and select high-quality samples for training.
One possible solution is to design multiple metrics to visually
summarize the data characteristics from different perspec-
tives. Their unstructured nature poses difficulties for users in
quickly understanding the content of samples, which requires
innovative visualizations of the data to alleviate the cognitive
load. In addition, multimodal data is now widely used in
training foundation models. However, visualizations of align-
ments between different modalities remain underexplored and
deserve further investigation.

The selection of test data shares most of the challenges
as the selection of training data, such as scalability issues
and the unstructured nature of the data. However, there are
some differences worth noting. The primary goal of test data
is to faithfully reflect the performance of foundation models
while also exposing their potential weaknesses. Therefore, it
is essential that the test data cover both the common samples
that models process regularly and the “edge case” samples
where models may fail. Visualization techniques are suitable
for examining the selection balance between these two types
of samples. It is therefore worth exploring how to integrate
visualization techniques with the subset selection method for
a well-balanced selection.
5.1.2 Training Diagnosis
Model Explanation. The intrinsic nature of foundation mod-
els is defined by their vast number of parameters. This vast-
ness, while being the source of their capability, also makes
them challenging to interpret. It is daunting to comprehend
the myriad interactions, transformations, and computations
that these parameters undergo. When a foundation model
produces outputs, it is the result of a cascade of intricate
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operations influenced by millions or even billions of param-
eters. Tracing back through these operations to identify the
exact reasoning or mechanism is similar to navigating a vast,
complex maze without a map. The larger and more complex
the model, the harder it becomes to interpret the specific
factors or processes that led to the given output.

The aforementioned challenge posed by the scale and
complexity of foundation models demands innovative visu-
alization solutions to incorporate human knowledge into the
analysis process. There is a growing opportunity to design and
develop novel visualization techniques tailored for such large-
scale models. These visualization tools can serve as “lenses,”
which allow users to peer into the depths of these models and
offer insights that can be grasped intuitively. Additionally,
exploration based on rich interaction techniques is also im-
portant for foundation model explanations. These exploration
methods would aim to simplify, without losing the essence,
the complex behaviors of foundation models into more under-
standable forms. The goal is a delicate balance between the
accessibility and faithfulness of the explanation. This might
involve developing multi-level interpretation mechanisms,
where users can choose the granularity of the explanation, or
harnessing unsupervised techniques to automatically identify
and present the most salient features or operations driving the
model’s decisions. Multi-level interpretation mechanisms are
designed to offer explanations at varying levels of detail, from
a high-level overview to detailed, granular insights. At the
highest level, these explanations provide a general summary
of the decision-making logic of the model. This is referred to
as surface-level interpretation. For example, for a text gener-
ation task, a surface-level explanation might state, “The model
generated this sentence based on the overall sentiment of the
input.” It can also provide a summary of the associated statis-
tics, such as confidence and bias scores. The next level can pro-
vide component-level interpretation, which aims to explain
the role of specific model components, such as particular lay-
ers or attention heads. For example, “The 10th attention head
focused primarily on the relationship between subject and ob-
ject in the sentence.” The potential deepest level may provide
parameter-level interpretation. It enables the examination
of the influence and interactions of specific parameters or
groups of parameters. This could involve visualizing weights,
gradients, or activations associated with particular tokens or
features. Given the vast amount of data present at each level,
there is a pressing need for an effective sampling method that
can easily capture human interest and display correspond-
ing data. This motivates the study of interactive sampling
strategies, which requires the development of interactive vi-

sualizations to facilitate the detection of different user intents.
Online Training Diagnosis. With the increasing complexity
of foundation models, the training time of foundation models
usually takes weeks or even months on high-end GPUs.
Tradition offline methods gather relevant data after the training
process and then feed them into the analysis tool, which is
less effective in reducing unnecessary training trials. Moving
the visual analysis earlier in the model development workflow
can save vast amounts of time and computing resources, such
as halting ineffective and inefficient training immediately.
Therefore, it is necessary to develop visualization techniques
that are suitable for monitoring real-time running results and
identifying performance issues and/or efficiency issues. There
are two interesting avenues that deserve exploration.

The first promising avenue is to support an in-depth analy-
sis of model performance during model training. While some
existing efforts like Tensorboard [88] have supported the on-
line monitoring of the training process, they only considered
high-level performance metrics, such as loss and predic-
tion accuracy. These metrics are too abstract to effectively
troubleshoot the reason why the model does not perform as
expected. To tackle this issue, it is necessary to integrate
advanced data analysis and model analysis modules into vi-
sualizations to provide richer information. By analyzing the
sample content and how the model processes them, model
developers can gain more insights into the performance issues
and address them accordingly.

The second promising avenue lies in the management of
large-scale profiling data in online diagnosis. Given the rapid
generation of profiling data and the input/output overhead
associated with transferring data from GPU to memory or
even disk storage, it becomes impractical to store all the data
and then transfer them to the visualization tool for analysis. In-
situ visualization is one of the promising methods to address
this issue [89]. It generates visualizations directly within
the computational environment where the data is generated.
Although in situ visualization has been shown to be useful
in scientific visualization [90, 91], it is still underexplored
whether it can be employed to streamline the efficiency
diagnosis during the model training.
5.1.3 Adaptation Steering
Model Fine-tuning. After fine-tuning a foundation model
for a specific task, the model will deviate from its pre-trained
version. The changes are not only about performance metrics
but also include model behavior, such as how the model
processes different types of input or forms new input-output
associations. By analyzing these behavior changes, model
developers can understand how generic knowledge evolves
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into task-specific knowledge and identify where the model
does not work as expected. Therefore, a promising research
opportunity lies in using visualizations to effectively monitor
these behavior changes and disclose abnormal behavior dur-
ing the fine-tuning process. With an in-depth understanding
of the behavior changes, model developers can identify when
the model starts to exhibit biases or vulnerabilities that down-
grade the model performance. After identifying these negative
issues, visualizations offer an efficient way to interactively
steer the fine-tuning process, for example, by adding more
balanced or targeted data. This method enhances not only the
model performance but also the reliability and robustness.
Prompt Engineering. Recent studies have shown that pro-
viding some high-quality examples within the prompts can
greatly enhance model performance, which is known as the
in-context learning ability [92]. In-context learning is a valu-
able component of prompt engineering. In this setup, prompt
engineering becomes a critical exercise in curating and struc-
turing examples that can guide the model effectively. To fully
leverage the capabilities of foundation models and achieve
satisfying performance, the provided examples should be
well-suited for the downstream task. However, generating
high-quality examples requires expertise and often involves
iterative refinement, which is usually trial-and-error in na-
ture. Visualizations offer an efficient way to facilitate this
refinement process by introducing humans into the analysis
loop [10, 12, 93]. One promising solution involves employing
visualizations to visually illustrate model responses across
different in-context examples. The insights derived from the
visualizations enable users to evaluate the effectiveness of the
constructed examples and identify those most suitable for the
current task. Based on the findings, they can make informed
refinements to the examples for better performance. In addi-
tion to interactively refining examples for each task, another
promising direction lies in using visualizations to summarize
general principles for example selection [94]. By exploring
different subsets of examples and performing comparative
analysis among them, users can summarize the principles
of which types of examples are beneficial and which are
not. These principles contribute to a more systematic and
informed example selection to craft effective prompts for the
downstream task.
Alignment via Human Feedback. In the model adaptation
process, aligning the model behavior with human preferences
is essential. This alignment not only improves the user expe-
rience by generating more relevant responses, but also tackles
ethical and societal concerns [6]. Recently, reinforcement
learning from human feedback has been shown to be effective

in aligning model behavior with human preferences [6]. This
method first trains a reward model directly from human feed-
back, which predicts whether the response aligns with human
preferences (high reward) or not (low reward). Subsequently,
this reward information guides the optimization of the founda-
tion models through reinforcement learning. In this process,
the key lies in collecting high-quality human feedback and
utilizing this data to train a reward model that accurately cap-
tures human preferences. Visualization techniques are suitable
for both tasks. First, interactive visualizations have already
demonstrated their value in enhancing the process of collecting
human feedback. Existing research on interactive data label-
ing showcases the effectiveness of visualization techniques in
facilitating the collection of human-generated data [95–97].
Second, visualization techniques offer an efficient way to di-
agnose the training process of reward models and interactively
refine them through additional human feedback. By tightly
integrating human inputs into this process, reward models
are better aligned with actual human preferences, thereby
providing more accurate and reliable reward information for
the ongoing optimization of the foundation model.

The challenge in this context is multi-faceted. First, collect-
ing high-quality human feedback is a difficult task in itself,
and the difficulty is amplified when the data must be fed into
a reward model that drives reinforcement learning. Errors or
biases in feedback collection can result in skewed training and
unreliable models. Second, while visualization techniques
offer the opportunity to collect human-generated data more
effectively, integrating these techniques seamlessly with rein-
forcement learning pipelines presents its own set of complex-
ities. Balancing real-time interaction with computational effi-
ciency in an already complex training process is a challenge.
Model Selection. In recent years, more and more model de-
velopers have uploaded their fine-tuned models together with
meta-data (e.g. , descriptions, model architectures, resources
requirements) to a learnware market [80, 98, 99]. The growing
availability of publicly fine-tuned foundation models opens a
new door to the efficient development of AI systems. When
confronted with an AI task, users have the option of searching
and selecting a pre-existing model in the learnware market that
fits their specific needs. However, without adequate expertise,
they might find it difficult to navigate through the large model
space to identify the optimal foundation model [100]. The
primary challenge is to guide user exploration by capturing
user needs and recommending models that have the potential
to achieve high performance. Accordingly, a possible solution
is to employ visualization techniques to visually illustrate the
model space. Through these visualizations, users can navigate
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the complex model space more easily, understand model
behaviors, identify model limitations, and compare models
from multiple perspectives, such as performance scores and
resources requirements. This multi-faceted understanding and
comparison enable them to identify the optimal model for
their specific tasks.
5.1.4 Model Evaluation
The visualization field has extensively covered quantitative
evaluation. Therefore, we focus on discussing the research
challenges and opportunities related to qualitative evaluation.
Evaluating Free-form Outputs. Recently, foundation mod-
els have achieved impressive performance in various tasks,
notably in answering open-ended questions without definitive
ground-truth answers. However, evaluating the quality of
free-form model responses remains challenging due to the
high variability in possible responses and the absence of clear
ground-truth answers. Addressing this challenge requires
human involvement in the evaluation process. However, the
sheer volume of data makes it unfeasible for users to manually
inspect and assess each model response individually. One
possible solution is to semi-automatically create rules for
evaluating the model responses, which can be achieved by ac-
tive learning methods. Visualizations enhance this process by
offering a comprehensive overview of these evaluation rules
and their associated model responses. Users can then itera-
tively refine these rules according to their preferences, which
ultimately leads to more accurate and reliable evaluations. An-
other potential solution is to utilize visualizations to highlight
the responses that are challenging for the semi-automatic
evaluation methods and present them to users for manual
review. To minimize redundancy and simplify this process,
it is essential to cluster a massive volume of responses and
intuitively summarize the clustering results in visualizations.
Robustness. Many foundation models, such as those in the
GPT series [5, 7], are generative models. Although these
models demonstrate impressive comprehension or generation
abilities, they may also misinterpret inputs or generate off-
target or wrong outputs. Such inconsistencies pose challenges
in the reliable deployment of these models, especially in
scenarios where a single error could have significant conse-
quences. As a result, there is an urgent need to get a clear
picture of their robustness. With this information, users can
assess how well these models might perform in different
situations and target weak areas for fine-tuning [101, 102].

To achieve this, one possible solution is to construct a set
of input samples with perturbations and compare the corre-
sponding model responses with well-designed visualizations.
This helps users understand how small changes in the input

can affect the model output. This provides information on
its robustness and sensitivity. Visualizations can assist in
identifying critical inputs that deserve closer examination,
interactively constructing perturbated inputs, and summariz-
ing multiple model responses for efficient analysis. Another
solution is to analyze a large number of inputs collected in
real-world scenarios to identify potential robustness issues
among them. In many applications, models are deployed in
complex environments where they encounter a wide range of
inputs. Manually examining each for robustness issues can be
an overwhelming task. Visualizations offer an effective means
to explore and filter a set of similar inputs that produce diverse
outputs. These anomalies often signal potential issues with
robustness. Once these anomaly pairs are identified, visualiza-
tion tools help run “what-if” analyses. These analyses examine
how the model behaves under various conditions, thereby
identifying specific areas where the model’s robustness can
be improved.
Fairness. Given that foundation models are increasingly de-
ployed in diverse cultural contexts and used by diverse user
groups, it is crucial to prioritize culturally sensitive, ethically
sound, and socially aligned explanations provided by VIS4FM
techniques. Consequently, it becomes essential to explore how
VIS4FM techniques effectively navigate cross-cultural differ-
ences, address ethical dilemmas, and assess their broader soci-
etal impact. This research direction is essential to advance the
area of VIS4FM and ensure responsible model deployments.

First, cross-cultural differences can significantly impact
how individuals perceive and interpret information. Cultural
factors such as language, beliefs, values, and norms influ-
ence the understanding and acceptance of foundation models
and their explanations. Therefore, it is important to investi-
gate how VIS4FM techniques can account for and adapt to
cross-cultural differences in explanation generation and pre-
sentation. This involves studying cultural biases in foundation
models, developing culture-aware explanation methods, and
conducting user studies in diverse cultural contexts to assess
the effectiveness and appropriateness of VIS4FM techniques.

Second, ethical considerations are important in the de-
velopment and application of adapted models. Visualization
techniques should adhere to ethical principles such as trans-
parency, fairness, privacy, and accountability. This includes
addressing issues such as algorithmic bias, discrimination,
and the potential impact of VIS4FM explanations on vulner-
able populations. Researching specific ethical frameworks
and guidelines for VIS4FM can help ensure that the deploy-
ment of adapted models with visual explanations is done in a
responsible and ethical way.
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5.2 FM4VIS

5.2.1 Feature Extraction and Pattern Recognition
Foundation models offer two notable new opportunities com-
pared with traditional machine learning models in these
two processes. First, due to their training on more diverse
and extensive datasets, foundation models typically generate
features of higher quality than those obtained from tradi-
tional machine learning models. These high-quality features
better disclose the underlying patterns in the data, such as
clusters [4, 53, 103]. These features facilitate visualization
researchers in designing suitable visualizations to analyze
the data. Second, previous feature extraction methods mainly
focus on single-modality data, such as Latent Dirichlet Allo-
cation (LDA) for textual data [104] and scale-invariant feature
transform (SIFT) for image data [105]. There are some recent
research efforts in training multi-modality foundation models,
such as CLIP [4], to map multi-modality data into one unified
feature space. This enables visualization researchers to design
a unified visualization for multi-modality data, which facili-
tates in disclosing the inter-modality relationships within the
data.

5.2.2 Visualization Generation
Prompted Content Generation. Large language models, as
widely studied foundation models, have shown the capabilities
of generating source code given natural language prompts.
For example, Code LLAMA [106] has shown state-of-the-art
performance on several public code generation benchmarks,
such as MBPP [107]. An interesting avenue for future research
could be to democratize visualization design by extending
these capabilities to automatically generate advanced visu-
alizations. By integrating with well-known engines, such as
D3 [108] and matplotlib [109], this method simplifies the
process for individuals without prior experience in visual-
ization design. They can create their own advanced visual
data representations and address complex data challenges.
Although the execution of this concept seems intuitive using
existing public APIs, the concept is not fully implemented.
Several research efforts are still underway to improve the
quality of the generated visualizations. First, the development
of a visualization-related instruction tuning dataset is critical.
Currently, the visualization code, such as the D3 code, only
makes up a small portion of the training corpus of large
language models. Thus, developing a dataset containing both
instructions and accompanying visualization code is necessary
to increase performance in creating different visualization
components with large language models. The importance
of visualization-specific datasets has been demonstrated by

existing automatic graph layout methods [110]. Using such
datasets and leveraging advanced fine-tuning techniques, such
as Reinforcement Learning from Human Feedback, can sig-
nificantly enhance the model’s code-generation capabilities
in the visualization field. Second, prompt engineering is
essential to ensure that the generated visualizations align
with the user intent. Existing research has illustrated that
different prompts have a substantial influence over the outputs
generated by large language models [111]. Thus, crafting an
effective prompt is critical. To alleviate human efforts in the
tedious prompt curation process, recent techniques, such as
automatic prompt optimization [112] can be leveraged.
Style Generation. In computer vision, style transfer refers
to the technique of applying the visual style of one image to
the content of another [113]. This often involves two images:
a content image and a style image. The algorithm reconfig-
ures the content image so it takes on the artistic style found
in the style image. For instance, StyleGAN [114] leverages
generative adversarial networks to distill the style cues from
the reference image. By incorporating style-based generator
layers, it offers fine-grained control over image attributes,
which improves the quality and versatility of generated im-
ages. Currently, these style transfer models remain within the
domain of natural image generation. However, the principles
behind style transfer offer potential applications beyond visual
arts. They open avenues into other fields like visualization.
It is still an open but important research avenue to harness
style transfer techniques effectively in the visualization field.
Such an extension would allow users to easily transfer stylis-
tic elements from one visualization to another. Moreover,
it would serve as a valuable resource for those with lim-
ited programming skills and would facilitate the creation
of user-centric visualizations with minimal effort. This can
make complex data more accessible and understandable to
a broader audience. A critical challenge in this endeavor is
to preserve the data integrity in the transferred visualization.
Unlike natural images, visualization is a visual form of data.
Therefore, the faithful representation of these data is critical.
Current style transfer techniques, when applied to visual-
ization, may introduce subtle changes in visual elements,
such as line length adjustments. This potentially leads to the
risk of perceptual errors. A promising research opportunity
lies in adapting the style transfer models to incorporate the
original data used for generating the visualizations, thereby
ensuring data integrity while transferring styles. Another
challenge lies in the automatic recommendation of styles, a
task complicated by the multifaceted intricacies of human
perception and divergent individual preferences. For example,
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one user might prioritize clarity and simplicity, while another
might focus on intricate detail and vibrant color schemes.
Additionally, cultural background, professional training, and
even mood can influence what a user finds engaging or easy to
interpret. These varying factors make the automatic process
of recommending styles a complex endeavor, as the system
must account for a wide range of subjective preferences.
Interaction Generation. Interaction enables users to tailor
views to specific information needs. It serves as a corner-
stone for effective data exploration and analysis. However,
creating intuitive and responsive interactions is a challenge
that demands expertise in both visualization techniques and
programming. The code-generation capabilities of foundation
models offer a significant opportunity. One interesting avenue
for research is the simplified interaction design. Similar to
the prompted content generation we discussed before, users
can implement some basic interactions by describing their
intent using natural languages. The challenge here lies in the
ambiguity that natural language often presents. This makes it
difficult to clearly describe complex interactive functionalities.
Therefore, an exciting opportunity exists in extending founda-
tion models to accept other types of input, such as sketches or
video examples, to produce more accurate interaction designs.
On a more advanced level, foundation models have the po-
tential to simplify the programming of complex interactions,
such as multi-stage animation scheduling and sophisticated
visual effects. Here, ensuring that the generated code meets
quality standards remains an ongoing issue. In response to
this, a potential avenue for future research is the development
of automatic quality assurance mechanisms that can evaluate
and refine the code generated by foundation models.
5.2.3 Visualization Understanding
Content Extraction. Previous research has highlighted the
enhanced reasoning capabilities inherent in foundation mod-
els [5]. Using these capabilities, visualization researchers can
then adapt foundation models to comprehend complex visual-
izations, such as node-link diagrams or treemaps, and extract
key information for in-depth analysis. For example, when
presented with a node-link diagram representing a complex
social network, foundation models can effectively identify
key information such as influential users, sub-communities,
and their connections. Descriptive captions and concise sum-
maries of this information can be generated and presented
alongside the visualization, which greatly facilitates visu-
alization comprehension. A critical challenge in adapting
current foundation models to understand complex visualiza-
tions is the lack of domain-specific data. Currently, existing
public datasets in the visualization field often focus on simple

charts like bar charts or line charts [14]. Thus, it is critical to
create a public dataset containing complex visualizations and
their extracted insights. Another challenge lies in identifying
contextually relevant information that matches the analyti-
cal focus. Interactive visualizations often excel at conveying
useful patterns embedded in a large amount of data. For
example, a visualization of a social network may present mul-
tiple interesting sub-communities that deserve exploration.
A tailored summary of sub-communities of interest is often
more beneficial than a generic overview of the entire network.
Consequently, the task of capturing users’ analytical focus
and dynamically extracting relevant patterns and tailored
summaries for visualizations emerges as a promising avenue
for future investigation.
Visual-Question-Answering-Based Communication. In
computer vision, developing machine learning models to
answer questions about an image is an active research topic,
which is referred to as visual question answering [115]. With
the help of foundation models, it becomes possible for users to
engage in free-form and open-ended dialogues about visual-
izations, which alleviates the cognitive load of understanding
visualizations. To achieve this vision, two key aspects deserve
consideration. First, the model needs to have a robust linguis-
tic comprehension capability and possess a large amount of
knowledge to effectively address open-ended questions about
visualization. While some foundation models like PaLM2
have achieved remarkable accuracy rates exceeding 90% on
the CommonsenseQA benchmark dataset [116], the capability
of answering open-ended questions about visualization re-
mains a topic for further study. Second, contextual awareness
is a critical component to enable a smooth multi-round dia-
log experience in foundation models. Currently, chat-centric
models, such as ChatGPT, have demonstrated the ability to
deliver desired results conditioned on previous user prompts
in the dialog [6]. Adding the underlying data to the prompts
can help the foundation model understand the visualizations
more precisely and answer numerical questions. However,
incorporating data into the prompts raises scalability issues.
Directly incorporating all the data into the prompts is not only
inefficient, but may also be unfeasible given the large volume
of the data. To solve this problem, the development of data
abstraction techniques (e.g. , sampling [117, 118], statistical
summary) becomes necessary, which enables the extraction
of the most important data closely linked to the generated
visualizations.
5.2.4 Active Engagement
Direct Interaction Enhancement. Currently, several widely
used interactions, such as brushing and zooming, have
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been overlooked in the training of foundation models.
Consequently, these models struggle to understand and
enhance such user interactions. To bridge this gap, there
are two potential solutions. A straightforward solution is to
convert these interactions into formats that current foundation
models can readily understand. For example, mouse-click
interactions can be converted into textual descriptions and
fed into large language models. A more promising solution
involves training or adapting foundation models to understand
these interactions directly. Encouragingly, initial efforts have
emerged to enhance model capabilities in this direction.
For example, DragGAN enables users to manipulate objects
within images through drag-and-drop interactions [119]. Such
efforts are notable steps toward expanding the capabilities
of interaction-aware foundation models.
Predictive Interaction Enhancement. Recently, there are
several initiatives to enhance the capabilities of foundation
models by creating foundation-model-based AI agents [120].
These AI agents are designed to mimic human behaviors and
typically include various modules, such as perception, mem-
ory, planning, and reflection, each of which is often supported
by a foundation model. Such agents can actively identify hu-
man feedback and incorporate it into their reflection module,
which adapts their actions in subsequent steps based on this
feedback [121]. It becomes feasible to employ these AI agents
for visual analysis tasks. Traditional approaches require do-
main experts to manually examine data through visualizations
and identify patterns through sequences of interactions, which
is time-consuming and expertise-dependent. In contrast, AI
agents possess the potential to simplify this analysis process
by generating similar interaction sequences based on the inter-
action sequences performed by domain experts. Nevertheless,
achieving such productive collaboration between humans and
AI agents still poses two challenges.

The first challenge lies in fine-tuning a foundation model
that is capable of automatically generating interaction se-
quences for extracting useful patterns. To alleviate the effort
to interact with different visual analysis tools, foundation
models can be utilized to generate interaction sequences,
which are then used to automatically extract pattern candi-
dates. Domain experts only need to examine these candidates
and find the most relevant patterns for further analysis. The
second challenge lies in efficiently adapting the foundation
model to specific visual analysis tools and domain experts.
To achieve this, boosting the model’s capacity for in-context
learning is crucial. The foundation model should be able to
learn from a few example interaction sequences performed by
experts and then extract more patterns in similar interactions.

6 Conclusions
The intersections of foundation models and visualizations
signify a substantial step in the advancement of AI systems.
On the one hand, VIS4FM becomes crucial in explaining
the complexities of foundation models. This highlights the
growing need for transparency, explainability, fairness, and
robustness in the expanding role of AI. On the other hand,
FM4VIS provides new pathways to further advance visual-
ization techniques. While the integration of these two fields
presents certain challenges, the potential benefits and ad-
vancements they can bring are undeniable. As we stand at this
crossroads, it is essential to confront the challenges head-on
while embracing the vast opportunities that lie ahead. This
confluence not only promises a brighter future for AI and
visualization, but also encourages a sustained journey of
discovery and innovation in this emerging research topic.
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(a) How visualizations enhance foundation models along the learning pipeline.

(b) How foundation models enhance visualizations along the visualization pipeline.


