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Abstract—Fuzzy clusters, where ambiguous samples belong
to multiple clusters, are common in real-world applications.
Analyzing such ambiguous samples in large-scale datasets is
crucial for practical applications, such as diagnosing machine
learning models. A promising method to support such analysis
is through hierarchical cluster-aware grid visualizations, which
offer high space efficiency and clear cluster perception. How-
ever, existing cluster-aware grid layout methods cannot clarify
ambiguity among fuzzy clusters, which limits their effectiveness
in fuzzy cluster analysis. To tackle this issue, we introduce a hi-
erarchical fuzzy-cluster-aware grid layout method that supports
hierarchical exploration of large-scale datasets. Throughout the
hierarchical exploration, it is crucial to facilitate fuzzy cluster
analysis while maintaining visual continuity for users. To achieve
this, we propose a two-step optimization strategy for enhancing
cluster perception, clarifying ambiguity, and preserving stability
during the exploration. The first step is to create cluster-aware
partitions, where each partition corresponds to a cluster. This
step focuses on enhancing cluster perception and maintaining
the previous shapes and positions of clusters to preserve stability
at the cluster level. The second step is to generate a grid
layout for each partition. In addition to placing similar samples
together, this step also places ambiguous samples near the
boundaries to clarify ambiguity and reveal the root causes of their
occurrences and maintains the relative positions of the samples
in the same cluster to preserve stability at the sample level.
Several quantitative experiments and a use case are conducted
to demonstrate the effectiveness and usefulness of our method in
analyzing large-scale datasets, especially in fuzzy cluster analysis.

Index Terms—Fuzzy clusters, grid visualization, scalability,
hierarchical exploration

I. INTRODUCTION

Fuzzy clusters, where ambiguous samples belong to mul-
tiple clusters, are common in real-world applications. For
example, an image in ImageNet [44] can belong to multiple
classes because it may contain multiple objects. Hierarchical
analysis of such ambiguous samples is beneficial in many big
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data analysis tasks. For example, it helps identify samples
with unclear categories in a large-scale training dataset and
promotes the understanding of the underlying reasons for their
occurrences. This insight can then be used to improve the
accuracy and robustness of machine learning models [22].

Many types of visualizations can support hierarchical anal-
ysis, such as tree diagrams, treemaps, and hierarchical grid
visualizations [33], [59]. Among them, hierarchical grid visu-
alizations are particularly well-suited for fuzzy cluster analysis
due to their high space efficiency and proximity preserva-
tion [7]. Along this line, Zhou et al. [61] have made an
initial effort. However, directly applying this method for fuzzy
cluster analysis still presents two limitations. First, Zhou et
al.’s method assumes a sample exclusively belongs to a single
cluster. This results in some ambiguous samples being placed
near the cluster centers with incorrect context of samples.
Such misplacement hinders users from understanding the root
causes of ambiguous samples. This issue is exacerbated during
hierarchical exploration due to accumulated errors in sample
positioning. Second, this method does not consider the preser-
vation of the previous positions and shapes of clusters and
cannot well preserve the previous positions of samples within
each cluster during interactive exploration (e.g., Fig. 1(a)).
According to the work of Bridgeman and Tamassia [3] and
our interviews with the experts, both aspects are essential to
maintaining visual continuity for users.

To address these limitations, we develop a hierarchical
fuzzy-cluster-aware grid layout method that supports hierar-
chical exploration and analysis of fuzzy clusters in large-
scale datasets. Our method processes a large-scale dataset
organized hierarchically, where initially, a set of samples from
the first-level clusters is sampled and displayed in a grid
layout. Users can then explore the displayed samples and
select areas of interest for further exploration. To facilitate
the exploration, the grid layout is designed to enhance cluster
perception, clarify ambiguity, and preserve stability. However,
it is challenging to balance these three aspects. Previous
studies [4], [39] have shown that cluster-level optimization
objectives (cluster perception and cluster-level stability) are
less affected by sample-level optimization objectives (ambi-
guity and sample-level stability). This motivates us to use
the divide-and-conquer paradigm, formulating a two-step op-
timization strategy. Specifically, the first step creates cluster-
aware partitions, where each partition corresponds to a cluster.
This step effectively enhances cluster perception and preserves
the previous shapes and relative positions of clusters. The
second step generates a grid layout for each partition. This
step places similar samples together while placing ambiguous

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3566558

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on May 22,2025 at 06:36:53 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

Wildcat

(a) Zoom in with

(b) Zoom in with
our method

B

Membership
degree

A misclassified tigerA
Tiger

Non-hunting dogsCheetah
Snow leopard

Lion

Domestic cat Expand

Zoom in 

No misclassified tiger
around the previous position

Many misclassified tigers 
around the previous position

C

D

Zhou et al.’s method

TabbyTiger cat Egyptian cat
Tiger Non-hunting dogs

...

Fig. 1. By checking the representative images, the user identifies a misclassified tiger and selects an area around it to zoom in for further analysis. (a) With
the state-of-the-art hierarchical cluster-aware grid layout method, Zhou et al.’s method [61], the user finds no more misclassified tigers around the previous
position. (b) With our method, the user identifies many misclassified tigers around the previous position, which saves him a lot of time.

samples close to the cluster boundaries and preserving the
relative positions of samples. We conducted several experi-
ments to demonstrate that our method is scalable to hundreds
of thousands of samples while effectively balancing cluster
perception enhancement, ambiguity clarification, and stability
preservation. Additionally, we further illustrate the utility of
our method through a use case that highlights its effectiveness
in analyzing model predictions.

In summary, the core contributions of our work include:
• A hierarchical fuzzy-cluster-aware grid layout method

that facilitates the exploration of large datasets at different
levels of detail.

• A two-step optimization strategy that enhances cluster
perception, clarifies ambiguity, and preserves stability.

• An open-source implementation of the hierarchical
fuzzy-cluster-aware grid layout method for exploring
large-scale datasets, which is available at https://osf.io/
a8epu/?view only=fac7bd5cbfc149fbb373df3e0eb5810f.

II. RELATED WORK

Existing grid visualization methods can be classified into
two categories: direct mapping and projection-based methods.

Direct mapping methods directly map samples from high-
dimensional spaces to two-dimensional grid cells. One of
the pioneering studies in this direction was proposed by
Quadrianto et al. [40]. They formulated the mapping as a
quadratic assignment problem to maximize the correlations
between the pairwise distances in the high-dimensional spaces
and the grid layout. Such a quadratic assignment formulation
has also been employed by Rottmann et al. [43] for enhancing

the compactness of samples within the same groups, and
Yoghourdjian et al. [60] for maintaining the proximity of
connected nodes in a network while preserving group con-
tainment within rectangular regions. In addition to solving a
quadratic assignment problem, swapping strategies and neural
networks are also utilized to maximize the similarities between
neighboring samples. The Self-Sorting Map [49] utilizes the
swapping strategies, which initially place samples randomly
in a grid layout and then employ hierarchical swapping to
improve the similarities between neighboring samples. The
effectiveness of the Self-Sorting Map is further improved by
Barthel et al. [1] with a new similarity measure that is better
aligned with human perception, and by Song et al. [48] with
a reinforcement learning mechanism. Meanwhile, the Self-
Organization Map trains a neural network to place similar
samples in neighboring grid cells [28]. It is widely used for
data exploration, such as cluster analysis [18], [45], [47].

Although the existing direct mapping methods have
achieved success in certain applications, such as image gallery
generation [1], [40] and graph layout [42], [60], they are
unstable and are ineffective in preserving proximity [15].
Therefore, projection-based methods are proposed.

Projection-based methods are designed to generate stable
and proximity-preserving grid visualizations. To this end, they
first project samples into a set of two-dimensional points with
dimension reduction methods. Then, these two-dimensional
points are assigned to grid cells. The existing methods primar-
ily differ in the assignment step [12], [19]. Fried et al. [15] for-
mulated the assignment as a weighted bipartite graph matching
problem and solved it with the Hungarian algorithm. To
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accelerate the Hungarian algorithm, Chen et al. [7] developed
a kNN-based approximation motivated by Hall’s theorem to
reduce the candidate grid cells for each sample. Instead of
formulating the assignment as a weighted bipartite graph
matching problem, CorrelatedMultiples [34] first employs a
force-directed graph layout method to resolve sample overlaps.
Then, the samples are perturbed locally to fit in a grid layout.
All the aforementioned methods remove empty spaces in the
grid layouts to display more samples. However, such a strategy
may negatively affect the analysis on class separation and
outlier [36]. To address this issue, DGrid [23] divided the
space into grids such that one grid contains no more than one
projected sample. The grids between samples are left empty
to reveal the class separation and outliers.

Although these two categories of methods are effective,
most of them suffer from the scalability issue when dealing
with large-scale datasets. Therefore, several hierarchical grid
layout methods have been proposed [2], [14], [61]. Among
these methods, the most relevant ones are DendroMap [2] and
Zhou et al.’s method [61]. DendroMap first clusters samples
into a hierarchy. At each hierarchical level, an improved slice-
dice treemap layout is utilized to place similar samples close to
each other. Zhou et al.’s method first samples several samples
to generate a cluster-aware grid visualization and assigns the
remaining samples to the nearest displayed samples. If users
select a set of displayed samples, these samples and some
of their assigned samples are displayed for further analysis.
Despite their effectiveness, they fail to accurately place
ambiguous samples that can be easily mispredicted by the
models near the cluster boundaries. Such misplacement poses
a challenge for machine learning experts in analyzing these
ambiguous samples, leading to an inaccurate understanding
of model performance. In addition, neither of them preserves
stability well during exploration. This often disrupts the
visual continuity of exploration. To address these issues, we
propose a scalable fuzzy-cluster-aware grid layout method
that supports hierarchical exploration. During the exploration,
a two-step optimization strategy is utilized to enhance cluster
perception, clarify ambiguity, and preserve stability.

III. DESIGN GOALS

The development of the hierarchical fuzzy-cluster-aware
grid layout method is based on collaboration with four ma-

chine learning experts and a literature review of existing
grid visualizations. The machine learning experts include two
Ph.D. students and two professors. None of them are the co-
authors of this work. Two of them also have rich working
experience in technology companies, ensuring the experts well
represent both academia and industry. All of them frequently
use data exploration toolkits (e.g., FiftyOne [37]). In these
toolkits, grid visualizations are key components. However, all
these grid visualizations are less effective in analyzing fuzzy
clusters, and most of them do not support the analysis of
large-scale datasets. We have now summarized the specific
disadvantages of these grid visualizations in the supplemental
material. Therefore, they desire a tool to effectively analyze
fuzzy clusters in large-scale datasets. To identify key design
goals, we conducted four semi-structured interviews with the
experts, each of which lasted 40-60 minutes. Based on the
interviews and the literature review, we identified the following
three design goals.

G1: Supporting cluster-aware hierarchical exploration.
One of the most effective strategies for supporting the analysis
of large-scale datasets is hierarchical exploration [5], [14],
[31]. All the experts prefer this strategy because it is familiar to
them. The need for hierarchical exploration is also consistent
with the findings of previous research [2], [24]. In addition,
enhancing cluster perception helps users perceive the samples
in a cluster as a whole [26], [42], [51]. This prevents users
from drawing wrong conclusions. Therefore, cluster perception
should be enhanced during hierarchical exploration.

G2: Placing ambiguous samples near their cluster
boundaries to facilitate fuzzy cluster analysis. Our experts
also pointed out that to analyze fuzzy clusters, it is critical to
place ambiguous samples in correct context. For example, E2

said, “A correct context can help me correctly understand the
root causes of ambiguous samples.” However, all the experts
have observed the misplacement of ambiguous samples in
the existing grid layout methods. This hinders them from
understanding the root causes of such ambiguous samples. For
example, E3 said, “I hope the ambiguous samples are placed
near their cluster boundaries with correct context, enabling
me to quickly identify the samples with which they are
confused.” While straightforward methods, such as displaying
a list of ambiguous samples with their neighbors are available,
these often require examining each sample and its neighbors

Hierarchical Data Grid Layout
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Fig. 2. Method overview: (a) given a large-scale dataset organized as a hierarchy, several samples are sampled for display; (b) the two-step strategy is utilized
to generate the grid layout; (c) Users select samples of interest for further exploration.
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Fig. 3. Illustration of the visual encodings of the interface.

separately. This limits their utility in real-world tasks. For
example, when analyzing two similar ambiguous samples
with many overlapping neighbors in a grid visualization,
users can examine their context simultaneously to quickly
identify the root cause of their ambiguity. However, with a
list, users have to examine the neighbors of each ambiguous
sample individually, which largely increases the workload.

G3: Preserving stability during exploration. Preserving
stability during exploration is important for preserving visual
continuity for users [53]. According to the work of Bridgeman
and Tamassia [3] and the interviews with the experts, we
classified the stability into cluster-level (G3-cluster) and
sample-level (G3-sample). For cluster-level stability, it is
required to preserve the previous shapes and relative positions
of clusters during exploration to facilitate easy tracking of
clusters. For sample-level stability, the relative positions of
samples should be preserved, which is essential for users to
effectively track and analyze the samples of interest.

IV. HIERARCHICAL FUZZY-CLUSTER-AWARE
GRID LAYOUT

A. Method Overview

Fig. 2 shows an overview of our hierarchical fuzzy-cluster-
aware grid layout method. The input of our method is a large-
scale dataset organized as a hierarchy. If such a hierarchy does
not exist, it can be constructed using hierarchical clustering
methods [38]. Initially, the clusters at the first hierarchical level
are selected (e.g., the clusters “plant,” “animal,” and “vehicle”
in Fig. 2(a)), and several samples are sampled from these
clusters for displaying. Then, a grid visualization is generated
(Fig. 2(b)) using a two-step optimization strategy to enhance
cluster perception (G1), clarify ambiguity (G2), and preserve
stability (G3). Users can select several samples of interest in
the grid layout (Fig. 2(c)). The clusters of the selected samples
can be further expanded into sub-clusters by a simple tree-cut
algorithm to avoid significantly imbalanced clusters. This tree-
cut algorithm recursively expands the cluster with the most
samples if the number of clusters is less than a threshold.
The selected samples, along with more samples sampled
from their neighbors in the selected/expanded clusters, are
displayed in the grid visualization for further analysis. This
selection strategy, supported by the tree-cut algorithm, selects
a sufficient number of samples to display for each cluster,
making the exploration effective even when cluster sizes and
hierarchical depths vary.

Color palette. Assigning discriminative and harmonious
colors to the grids of different clusters can enhance the
perception of clusters [7]. However, generating a color
scheme that assigns discriminative and harmonious colors
to all clusters within the hierarchy is challenging or even
impossible when the cluster number is larger than 26 [13],
[52]. To address this color overloading issue, we use
DynamicColor [8] to dynamically assign colors to the clusters
as they are displayed, ensuring better discrimination and
harmony. To ensure color continuity during exploration,
DynamicColor utilizes the colors of parent clusters to guide
the color assignment of their child clusters. Specifically,
DynamicColor first determines a sphere in the color
space for each parent cluster. Then, the colors of the
child clusters are constrained to fall within the associated
sphere. For better color continuity, it is essential to ensure
discriminability between and within parent clusters. To ensure
the discriminability between parent clusters, the distance
between two spheres must exceed the radii of both spheres:
bij−ri−rj > max(ri, rj). Here, ri is the radius of the sphere
of the i-th parent cluster, and bij is the distance between
two spheres. To ensure the discriminability within the child
clusters of a parent, the size of the spheres must increase with
the number of child clusters. According to the experimental
results in DynamicColor, the radius is proportional to the
square root of the number of child clusters: ri/rj =

√
ni/

√
nj .

ni is the number of child clusters of the i-th parent cluster.
Finally, the radii of the spheres are determined as the
maximum radii that satisfy both bij − ri − rj > max(ri, rj)
and ri/rj =

√
ni/

√
nj . With this strategy, the colors of child

clusters within the same parent cluster are more similar to
each other than to those of child clusters from different parent
clusters. This helps users capture the correspondence between
the colors of child clusters and their respective parent clusters,
which effectively addresses the visual overloading issue.

Interface. To help users explore the grid visualizations,
we develop a simple interface. As shown in Fig. 3, each
square represents a sample. The filled squares denote normal
samples (Fig. 3A), while the others represent ambiguous
samples (Fig. 3B). The filling heights of ambiguous samples
encode their membership degrees to their associated clusters.
Accordingly, the height of the unfilled portion represents the
ambiguity degree. In our implementation, samples with ambi-
guity degrees larger than 0.2 are treated as ambiguous samples.
Users can adjust this threshold according to different applica-
tions. To give an overview of the data, the content of several
representative samples is displayed (Fig. 3C), with each sam-
ple accompanied by a map pin ( ) indicating its grid cell. The
representative samples are selected by prioritizing the most
ambiguous ones while ensuring no overlapping between them.

B. Two-Step Optimization Strategy for Grid Layout

A straightforward way to generate fuzzy-cluster-aware and
stable grid visualizations is to integrate ambiguity clarification
and stability preservation into Zhou et al.’s cluster-aware
method [61]. Specifically, taking a proximity-preserving grid
layout as input, the samples are re-assigned to enhance cluster
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Fig. 4. Two-step optimization strategy: cluster-aware partition creates the partitions for each cluster to enhance cluster perception and preserve cluster-level
stability; sample assignment places similar samples together for each cluster while clarifying ambiguity and preserving sample-level stability.

perception, clarify ambiguity, and preserve stability. However,
this does not work for two reasons. First, for cluster-level
stability, it is essential to preserve the previous positions and
shapes of clusters. However, Zhou et al.’s method focuses
on individual samples rather than considering each cluster as
a whole, resulting in an inability to preserve cluster shapes
and positions. Second, for the ambiguous clarification and
sample-level stability, it is necessary to consider the relative
positions between samples [10]. This complicates the grid
layout problem into an NP-hard quadratic assignment problem
(QAP) [29]. Although there are approximate algorithms such
as the Fast Approximate QAP algorithm (FAQ) [55] with a
time complexity of O(N3), they cannot ensure interactive rates
for grid layout generation when dealing with thousands of
samples. This constraint limits their utility for hierarchically
exploring large-scale datasets [7].

The divide-and-conquer paradigm is an effective way to
accelerate the grid layout generation by breaking it into
manageable sub-problems. Previous studies [4], [39] point
out that clusters are more readily perceived than individuals.
It implies that cluster-level optimization objectives (cluster
perception and cluster-level stability) are more important than
sample-level optimization objectives (ambiguity and sample-
level stability). Moreover, the sample-level optimization ob-
jectives are more sensitive to the sample positions within
each cluster, which results in less influence on cluster-level
optimization objectives. Motivated by these findings, we pri-
oritize cluster-level optimization by dividing the problem at
the cluster level. Subsequently, sample-level objectives are
optimized for each cluster. Accordingly, a two-step strategy is
developed, comprising cluster-aware partition and sample
assignment (Fig. 4). Given a selected area in the grid lay-
out, the cluster-aware partition step creates the partitions for
each cluster to enhance cluster perception (G1) and preserve
cluster-level stability (G3-cluster). The sample assignment

step then assigns similar samples to neighboring grid cells in
each partition while clarifying ambiguity (G2) and preserving
sample-level stability (G3-sample). Since sample assignment
in each cluster is independent of others, the QAP can be
decomposed into multiple smaller QAPs and solved in parallel.
This significantly reduces the time cost. Our experiments in
Sec. V-A demonstrate that this two-step strategy can generate
the grid layouts at interactive rates while enhancing cluster
perception, clarifying ambiguity, and preserving stability well.

B1. Cluster-Aware Partition
The cluster-aware partition step creates partitions for each

cluster while enhancing cluster perception and preserving
cluster-level stability. Enhancing cluster perception involves
the preservation of the cluster proximity, compactness, and
convexity. Preserving cluster-level stability aims to preserve
the relative positions of clusters and their shapes. To achieve
these goals, we further divide this step into three sub-steps:
cluster localization, partition generation, and partition ad-
justment. First, the cluster localization finds the cluster centers
such that proximities between clusters are preserved, and
the positions of clusters are preserved during the exploration
(Figs. 4(a) and 4(e)). Then, partitions are generated around the
cluster centers that ensure compactness and convexity while
preserving the shapes of clusters (Figs. 4(b) and 4(f)). Finally,
partition adjustment adjusts the partitions in accordance with
the grid constraints to ensure all the partitions are filled with
grids (Figs. 4(c) and 4(g)).

Cluster localization. Given M clusters, the cluster localiza-
tion aims to find M cluster centers C = {c1, c2, . . . , cM} that
preserves proximities between clusters and maintains cluster
position stability:

min
C

M∑
j>i

1

d2ij
(||ci − cj ||2 − dij)

2 + µ

|Z|∑
i=1

||czi − c′zi ||
2
2. (1)
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The first term minimizes the difference between cluster dis-
tances in the grid layout and their ideal distances. The second
term minimizes the difference between the current and previ-
ous positions of the cluster centers during exploration.

In the first term, following the Kamada–Kawai layout
method [25], we use the L2 loss to measure the difference
between cluster distances in the grid layout and their ideal
distances. dij is the ideal distance between the i-th and
the j-th clusters. To ensure proximity (G1) and place more
ambiguous samples near the boundaries (G2), clusters with
high similarities, or those that are easily confused with each
other, should be positioned closely together. As these two
goals are not always positively related, dij is designed as the
sum of two parts to encourage both goals, which is widely
used for optimizing multiple objectives [50]. The first part of
dij is the dissimilarity between the i-th and the j-th clusters,
which is measured by their Euclidean distance in the high-
dimensional space, following the work of Liu et al. [32].
The second part is the confusion between the i-th and the
j-th clusters. Similar to the work of Gupta et al. [9], it is
measured by the symmetric Kullback-Leibler divergence of
the averaged membership degrees (e.g., averaged prediction
probability distributions) of the i-th and the j-th clusters. The
two parts are normalized and averaged to obtain the ideal
distances. In the second term, we use the L2 loss to measure
the difference between the current and previous positions of
the cluster centers, following the work of Xu et al. [57]. As the
displayed clusters are dynamically changed, we only apply this
term to clusters that appear in both the current and previous
grid layouts. Z = {z1, z2, ..., z|Z|} are the indices of these
clusters. c′zi is the previous center position of cluster zi. The
weight µ controls the trade-off between the two terms and is
determined with the multi-task learning method [8]. Its key
idea is dynamically increasing the weights of the terms that
are not well-optimized so that they can be further improved.
To determine how well each term is optimized, we compare
their current scores to their optimal ones. The optimal score
for each term is obtained by optimizing this term only. The
details of how this method adjusts the weights are given in
the supplemental material. Eq. (1) is optimized with the force-
directed method [16].

Partition generation. Based on the obtained cluster centers,
we generate partitions that can accommodate all the samples
in the associated clusters while ensuring cluster compactness
and convexity. The previous user study [61] shows that no
single convexity measure aligns with the perception of all
people. However, two representative measures, the triple ratio
and perimeter ratio measures, are preferred by the participants.
As these two measures somewhat conflict with each other, we
develop two partition generation methods for each of them
(Figs. 4(b) and 4(f)).

• Triple Ratio. The triple ratio is defined as the probability
that, given a collinear triple (vi, vj , vk), if vi and vk are
inside the partition, then vj is also inside the partition. Under
this convexity measure, we aim to generate partitions that
maximize the triple ratio values while ensuring compactness
and the accommodation of all samples in their associated
partitions. This generation can be formulated as:

min
Ω

M∑
i=1

∫
Ωi

||x− ci||2dx

s.t. |Ωi| = Ni, ∀i ∈ {1, 2, . . . ,M}.
(2)

The objective function measures the compactness of the parti-
tions in the 2D plane. The constraint ensures that each partition
can accommodate all the samples in the associated cluster.
According to the previous study [56], this formulation can
also ensure convex partitions under the triple ratio measure.
Ωi, ci, and Ni are the partition, the center, and the number of
samples of the i-th cluster, respectively. Optimizing Eq. (2) is
equivalent to generating a centroidal power diagram [56].

• Perimeter Ratio. The perimeter ratio is defined as the
ratio of the perimeter of the partition’s convex hull to its
perimeter. Optimizing this measure results in partitions with
horizontal or vertical boundaries in grid layouts. To generate
such partitions, we enforce that each partition is a rectangle.
With this constraint, we aim to ensure the compactness and the
accommodation of all samples in their associated partitions.
This is equivalent to ensuring the aspect ratios of the partitions
are close to one and the areas of the partitions are proportional
to the number of samples. To achieve this goal, we develop a
greedy method with heuristic cuts, which is motivated by the
treemap layout method [46]. Given a set of cluster centers,
we first divide the layout space into two partitions with a
horizontal or vertical cut. The position and direction of this
cut are determined by ensuring that the aspect ratios of the
partitions are close to one and each divided partition can
accommodate all the samples of the clusters within it. Then,
these two partitions are further divided in the same manner.
This process is repeated until each partition contains one and
only one cluster.

For both convexity measures, we utilize the initialization
strategy to preserve shape stability. Specifically, we use the
previous partitions to initialize the partition processes. If the
selected clusters are expanded into sub-clusters, we further
apply this method to generate partitions for the sub-clusters.

Partition adjustment. As the boundaries of the generated
partitions may intersect with some grid cells, not all the associ-
ated samples can fit in these partitions as grid cells. Therefore,
we develop a partition adjustment method that re-assigns these
intersected grid cells to satisfy the grid constraint. The basic
idea behind this method is that each intersected grid cell should
be assigned to the closest partition in priority. Meanwhile, the
number of grid cells in each partition should be equal to the
number of samples from the associated cluster. This can be
formulated as:

max
π

N∑
i=1

M∑
j=1

πijaij

s.t.
∑N

i=1
πij = Nj , ∀j ∈ {1, 2, . . . ,M},∑M

j=1
πij = 1, ∀i ∈ {1, 2, . . . , N},

πij ∈ {0, 1}, ∀i, j,
Grid cells in each partition are connected.

(3)
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N is the number of samples. aij is the area of the overlap
between the i-th grid cell and the j-th partition. The first
constraint ensures that the number of grid cells in each
partition is equal to the number of samples from the associated
cluster. The second and third constraints ensure that each grid
cell is assigned to one and only one partition. The fourth
constraint ensures that the grid cells in each partition constitute
a connected region. πij = 1 indicates that the i-th grid cell is
assigned to the j-th partition. It can be proved that optimizing
Eq. (3) is NP-hard by reducing from the 3-SAT problem
[27]. Thus, we develop a greedy algorithm for computational
efficiency. For each partition, we assign cells in descending
order of their overlap areas with this partition. A cell is not as-
signed to this partition if the connected region constraint is not
satisfied. This process is repeated until all cells are assigned.

B2. Sample Assignment
After obtaining the partitions for all clusters, the sample

assignment step (Figs. 4(d) and 4(h)) assigns similar sam-
ples to neighboring grid cells for each cluster parallelly.
Meanwhile, it should place ambiguous samples close to the
corresponding cluster boundaries and preserve sample-level
stability during exploration. Accordingly, this can be formu-
lated as a quadratic assignment problem. For the t-th cluster,
let S = {s1, s2, . . . , sn} denote the samples of this cluster, and
V = {v1, v2, . . . , vn} denote the grid cells in the associated
partition. n = Nt is the number of samples in this cluster.
An assignment of the samples to cells δ={δij}1≤i,j≤n is a
binary matrix, in which δij = 1 indicates that the i-th sample
is assigned to the j-th cell. The quadratic assignment problem
for the t-th cluster is to minimize the following cost:

min
δ

n∑
i,j=1,i̸=j

n∑
k,l=1

pij log
pij
qkl

δikδjl + ω1

n∑
i,j=1

M∑
k=1

fikrjktδij

+ ω2

|O|∑
i,j=1

n∑
k,l=1

h((g′(soi), g
′(soj )), (vk, vl))δoikδoj l

s.t.
∑n

i=1
δij = 1, ∀j ∈ {1, 2, . . . , n},∑n

j=1
δij = 1, ∀i ∈ {1, 2, . . . , n},

δij ∈ {0, 1}, ∀i, j.
(4)

The first term is to place similar samples close to each
other. Following t-SNE [35], this term is defined as the
Kullback-Leibler divergence between the distributions in the
high-dimensional space and the two-dimensional grid layout.
pij is the similarity of samples in the high-dimensional space,
and qkl is their similarity in the two-dimensional grid layout.

Previous Current

(a) (b) (c) (d)

Fig. 5. Four examples with their orthogonal mental distance values: (a) zero,
(b) one, (c) one, and (d) two.

We adopt Gaussian distribution for the calculation of pij and
Student-t distribution for qkl.

The second term is to place ambiguous samples close to
their corresponding boundaries. Following the work of Xu et
al. [58], this term is defined as the total products between the
membership degrees of ambiguous samples and their distances
to the corresponding cluster boundaries. fik is the membership
degree of the i-th sample to the k-th cluster. rjkt is the distance
of the j-th cell to the boundary between the k-th cluster and
the cluster under processing (i.e., the t-th cluster) if they are
adjacent. If the two clusters are not adjacent, rjkt is set to
zero since there are no boundaries between them.

The third term is to preserve the relative positions of
the samples during exploration, which is measured by the
commonly used orthogonal mental distance [10]. If the orders
of two cells in both the horizontal and vertical directions are
not changed (e.g., Fig. 5(a)), the orthogonal mental distance
is zero. If the orders are changed in one direction, the
orthogonal mental distance is one (e.g., Figs. 5(b) and 5(c)).
Otherwise, the distance is two (e.g., Fig. 5(d)). Formally, for
two pairs of cells e = (v1, v2) = ((x1, y1), (x2, y2)) and
e′ = (v′1, v

′
2) = ((x′

1, y
′
1), (x

′
2, y

′
2)), the orthogonal mental

distance is given by

h(e′, e) =|ϵ(x′
1 − x′

2)| · |(ϵ(x′
1 − x′

2)− ϵ(x1 − x2))|/2
+ |ϵ(y′1 − y′2)| · |ϵ(y′1 − y′2)− ϵ(y1 − y2)|/2,

(5)

where ϵ(x) ∈ {−1, 0, 1} is the sign function. O =
{o1, o2, . . . , o|O|} are the set of indices of the samples that
appear in the previous layout. g′(si) are their corresponding
cells in the previous layout. The constraints ensure each
sample is assigned to a grid cell, and each grid cell is assigned
a sample. The weights ω1 and ω2 control the trade-off between
the three terms and are also determined by the multi-task
learning method [8] used in the cluster localization sub-step.
As optimizing Eq. (4) is NP-hard, we adopt an approximate
algorithm, FAQ [55], to solve it efficiently.

V. EVALUATION

To demonstrate the effectiveness of the proposed hierarchi-
cal fuzzy-cluster-aware grid layout method, we conducted two
quantitative experiments and a use case on real-world datasets.

A. Quantitative Experiment

Datasets. We evaluated our method on three real-world
datasets: CIFAR-100 [30], iNat2021-mini [54], and ImageNet-
1k [44]. The number of classes and samples within these
datasets are shown in Tab. I. The class numbers of these
datasets range from 100 to 10, 000, and the sample numbers
range from 60, 000 to 1, 281, 167. We used three popular
open-sourced model checkpoints 123 to extract features and
predict classes for CIFAR-100, iNat2021-mini, and ImageNet-
1k, respectively.

1https://huggingface.co/edadaltocg
2https://github.com/visipedia/newt
3https://github.com/rwightman/pytorch-image-models

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3566558

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on May 22,2025 at 06:36:53 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

TABLE I
THE NUMBERS OF CLASSES AND SAMPLES OF THE DATASETS.

Dataset Class number Sample number

CIFAR-100 100 60, 000
iNat2021-mini 10, 000 500, 000
ImageNet-1k 1, 000 1, 281, 167

Experimental settings. We compared our method with the
state-of-the-art (SOTA) ones from the two categories of grid
layout methods. The first baseline is Zhou et al.’s method,
which is the SOTA projection-based grid layout method.
To compare Zhou et al.’s method with ours, we simulated
several zoom-in operations by randomly selecting areas in the
grid layouts. The other two baselines are DendroMap [2] and
LAS (linear assignment sorting) [1], the SOTA direct mapping
grid layout methods. DendroMap [2] displays samples in a
treemap. As only the treemap nodes can be selected for
zooming in DendroMap, we simulated the zoom-in operations
by randomly selecting treemap nodes instead of areas. To
enable LAS to handle large-scale datasets, we enhance it by
incorporating the same hierarchical exploration strategy used
in our method, with the distinction that the grid visualizations
at each level are generated by LAS. Exemplary zoom-in
operations of these methods can be found in the supplemental
material.

For Zhou et al.’s method, as it is able to optimize both
the triple ratio and perimeter ratio convexity measures, we
compared our method to it under both measures. DentroMap
tends to generate grid layouts with horizontal or vertical
boundaries. Therefore, we only compare our method to it with
the perimeter ratio convexity measure, which also tends to
generate such boundaries. LAS tends to generate grid layouts
with slanted boundaries. Thus, we compare it to our method
with the triple ratio convexity measure, which is more suited
to layouts with slanted boundaries. To evaluate the effects of
grid sizes, the comparison is conducted under three different
grid sizes: 30× 30, 40× 40, and 50× 50.

Evaluation measures. As enhancing cluster perception (i.e.,
compactness, convexity, and proximity), clarifying ambiguity,
and preserving stability are important for hierarchical fuzzy-
cluster-aware grid visualizations [3], [61], we evaluated the
results from these perspectives.

Compactness. According to Rottmann et al. [43], compact-
ness is quantified by calculating the average squared distances
between the grid cells of samples and their cluster centers:

Comp. =
N∑
i=1

||g(si)− ci||2

N
,

where g(si) and ci are the associated grid cell and cluster
center of the i-th sample, respectively.

Convexity. The two representative convexity measures, the
triple ratio and perimeter ratio, are used for evaluation [61].
They have been introduced in Sec. IV-B1. As these two
measures conflict with each other to some extent, we evaluated
the grid layout results under them separately.

10 20 30 40 50
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# Preserved
neighbors

Ideal

AUC

Proximity. DendroMap [2] evalu-
ates the proximity by the k-nearest
neighbor (kNN) preservation plot. It
shows how well the kNNs in the high-
dimensional space are preserved in the
grid layouts under different k values.
Inspired by the AUROC [21], we utilized the areas under
the curves (AUC) in the plots as the quantitative measure to
ensure quantitative comparability and robustness to the choice
of k. We limited the maximum value of k to 50 to balance
effectiveness and computational efficiency.

Stability. For cluster-level stability, it is crucial to preserve
the shapes and relative positions of clusters. Therefore, two
measures are considered: cluster shape stability (Stab-shape)
and cluster position stability (Stab-position). For the cluster
shape stability, we utilized the Intersect over Union (IoU)
between the previous and current shapes of clusters as the
evaluation measure. We chose the IoU because it is widely
used for measuring the similarity between two shapes [62]. As
the positions and scales of the clusters change during zooming
in, we rescaled the previous and current shapes and aligned
their centers before calculating the IoU values. For the cluster
position stability, as the absolute positions of clusters change
during zooming in, we utilize the changes of relative positions
to measure the position stability:

Stab-position =

|Z|∑
i

|Z|∑
j

||cziczj − c′zic
′
zj ||

2NziNzj

N2
,

where c′i and ci are the previous and current centers of the
i-th cluster, respectively. cicj is a vector from ci to cj . Z =
{z1, z2, ..., z|Z|} are the indices of the clusters that appear both
in the previous and current grid layouts. Ni is the sample
number in the i-th cluster, and N is the total sample number.

For sample-level stability (Stab-sample), we utilized the
commonly-used orthogonal mental distance [10]. It measures
how likely the orders of pairs of cells are changed. The formal
definition is given in Sec. IV-B2.

Ambiguity. To accurately measure ambiguity preservation,
two perspectives need to be considered. If two clusters are
adjacent, we evaluated the ambiguity preservation by the prod-
ucts between the membership degrees of ambiguous samples
and their squared distances to the corresponding cluster bound-
aries, the same as the sample assignment step in Sec. IV-B2.
If two clusters are not adjacent, the number of ambiguous
samples between them should be small. Therefore, we punish
such results by using the products between the membership
degrees of ambiguous samples and a large value. In our im-
plementation, we set this large value for an ambiguous sample
as the largest squared distance between cells in its associated
cluster. We use the prediction probability distribution as the
membership degrees of a sample to different clusters. The
samples whose ambiguity degrees are larger than 0.2 are
treated as ambiguous samples in our evaluation.

Comparison Results. The quantitative experiment results are
shown in Tabs. II and III. The results are averaged over 1, 350
trials (150 simulated zoom-in operations × 3 grid sizes × 3
datasets). The detailed results are in supplemental material.
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TABLE II
COMPARISON OF ZHOU et al.’S METHOD AND OUR METHOD. ↑ (↓) INDICATES THE HIGHER (LOWER) IS BETTER.

Conv. type Method Comp. ↓ Conv. ↑ Prox. ↑ Stab-shape ↑ Stab-position ↓ Stab-sample ↓ Ambi. ↓

Triple ratio Zhou et al.’s method 0.020 0.996 462.1 0.65 0.214 695.9 6.06
Ours 0.019 0.997 506.0 0.93 0.100 3.2 4.41

Perimeter ratio Zhou et al.’s method 0.025 0.918 442.0 0.55 0.229 703.1 7.54
Ours 0.022 0.965 501.8 0.90 0.115 3.7 4.56

TABLE III
COMPARISON OF DENDROMAP AND OUR METHOD. ↑ (↓) INDICATES THE HIGHER (LOWER) IS BETTER.

Method Comp. ↓ Conv. ↑ Prox. ↑ Stab-shape ↑ Stab-position ↓ Stab-sample ↓ Ambi. ↓
DendroMap 0.109 0.536 366.9 0.34 0.323 1560.8 11.34
Ours 0.029 0.959 518.6 0.89 0.109 8.9 4.25

TABLE IV
COMPARISON OF LAS AND OUR METHOD. ↑ (↓) INDICATES THE HIGHER (LOWER) IS BETTER.

Method Comp. ↓ Conv. ↑ Prox. ↑ Stab-shape ↑ Stab-position ↓ Stab-sample ↓ Ambi. ↓
LAS 0.058 0.603 545.2 0.34 0.560 1452.8 57.87
Ours 0.019 0.997 506.0 0.93 0.100 3.2 4.41
Ours with proximity only 0.058 0.589 545.8 0.33 0.479 1433.4 57.42

Tab. II shows the quantitative comparison between Zhou et
al.’s method and our method. To explain their difference more
intuitively, we also visually compared their results on three
datasets in Fig. 6. From Tab. II and Fig. 6, we identified the
following observations.

Compactness. Regarding the compactness, our method is
slightly better than that of Zhou et al.’s method. This indicates
that our method does not sacrifice compactness preservation
to achieve ambiguity clarification and stability preservation.

Convexity. For the triple ratio measure, the convexity scores
of both methods are very close. Our method improves the
convexity score by a margin for the perimeter ratio measure.
This is because our method tends to generate clusters that are
closer to rectangles than Zhou et al.’s method (e.g., Figs. 6G
and 6H), which has high perimeter ratios.

Proximity. Our method performs better than Zhou et al.’s
method in terms of proximity measure. The main reason is that
Zhou et al.’s method preserves proximity by first projecting
samples to a set of two-dimensional points with dimension
reduction methods. Then, these two-dimensional points are
assigned to grid cells. Both the projection and assignment
introduce distortions. Our method projects samples to grid
layouts directly via the quadratic assignment, which reduces
the distortions and thus improves the proximity.

Cluster-level stability. Compared with Zhou et al.’s method,
our method performs better in terms of cluster-level stability
measures. For example, in Fig. 6D, the purple cluster is in the
top-left corner within the selected area. However, Zhou et al.’s
method places it in the middle left after zooming (Fig. 6E). On
the contrary, our method still places this cluster in the top-left
corner (Fig. 6F). In addition, the shapes of clusters are better
preserved by our method (e.g., Fig. 6L) than Zhou et al.’s
method (e.g., Fig. 6K).

Sample-level stability. Regarding the sample-level stability
measure, our method performs better than Zhou et al.’s
method. To better visually compare the preservation of the

sample-level stability, we selected one cluster (Fig. 6A) and
followed the work of Han et al. [20] to re-assign different
colors to cells according to their positions. Then, we apply
the color scheme to the new grid layouts after zooming in. As
shown in Figs. 6B and 6C, the colored grid layout generated
by our method is more similar to the previous one than that
generated by Zhou et al.’s method. It shows that the relative
positions of samples are better preserved by our method.

Ambiguity. Our method also clarifies ambiguity better than
Zhou et al.’s method. For example, the ambiguous samples
scatter in the grid layout generated by Zhou et al.’s method
(e.g., Fig. 6I). However, our method places them closer to the
boundaries (e.g., Fig. 6J).

Tabs. III and IV show the comparison with DendroMap
and LAS. Consistently, our method performs better than them
in all measures except that our method performs worse than
LAS in proximity. This is because LAS primarily focuses on
optimizing proximity, whereas our method balances multiple
objectives, including convexity, compactness, stability, and
ambiguity. This multifaceted optimization sometimes results
in sub-optimal proximity. To validate this, we conducted an
additional comparison where our method focuses solely on
optimizing proximity. As shown in Table IV, our method
slightly performs better than LAS in the proximity measure,
demonstrating the effectiveness of our optimization method.

Running Time. To demonstrate that our method can meet
the interactive requirements, we conducted an experiment in
a desktop PC equipped with an Intel i9-13900K CPU. In
addition to the previously used grid sizes (30 × 30, 40 × 40,
and 50× 50), we also assessed the running time in generating
larger grid sizes (60× 60, 80× 80, and 100× 100) to provide
a more comprehensive evaluation.

As shown in Tab. V, our method can generate a 50 × 50
grid layout around 1 second. If the number of samples is
larger than 50 × 50, our method can build a hierarchy for
them and ensure no more than 50× 50 samples are displayed
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TABLE V
THE RUNNING TIME (IN SECONDS) OF OUR METHOD UNDER DIFFERENT GRID SIZES.

Conv. type Method 30 × 30 40 × 40 50 × 50 60 × 60 80 × 80 100 × 100

Triple ratio Ours 0.51 0.82 1.38 1.75 3.92 8.08

Perimeter ratio Ours 0.39 0.65 1.27 1.58 3.61 7.49

at each level. In this way, our method can support real-time
interactive exploration of large-scale datasets.

B. Use Case

We conducted a use case to demonstrate how ambiguity
clarification and stability preservation help analyze model
performance. We invited E1 to analyze a ViT-B model [11]
trained on the ImageNet-1k dataset. The training accuracy was
85.62%. E1 wondered why the ViT-B model could not fit the
training data well. Therefore, he used our method to analyze
the model predictions on the training data. The samples with
the same predicted class were treated as a cluster, and colors
were used to encode predicted classes. Since deep learning
models often underestimate the ambiguity degrees of sam-
ples [17], E1 set the ambiguity degree threshold as a relatively
low value of 0.2. E1 began his analysis on the sub-hierarchy
“animal” because he was familiar with this sub-hierarchy.

Identifying confusion between clusters. In the grid layout,
E1 found many ambiguous samples (Fig. 7(a)). Seeking to
understand the underlying causes, he selected an area with
the most ambiguous samples (Fig. 7A) and zoomed in for
closer inspection. Upon zooming in (Fig. 7(b)), only two

clusters were left: “hunting dog” (brown) and “non-hunting
dog” (yellow). E1 observed that all ambiguous samples were
near the boundaries, which helped him identify and analyze
them easily. For instance, in Fig. 7D, ambiguous samples
of hunting and non-hunting dogs are positioned closely.
Examining their associated images (Figs. 7C and 7E), E1

noted that these dogs, such as the Lhasa Apso (hunting
dogs) and Shih-Tzu dogs (non-hunting dogs), have similar
appearances characterized by dense, long hairs. These features
made them challenging to distinguish. This explains why
confusion arose in this area. Conversely, with Zhou et al.’s
method, these non-hunting dogs, such as the Shih-Tzu dogs,
were positioned away from the boundaries of their cluster
(Fig. 7F). Moreover, many of their neighbors were Boxer
dogs (e.g., Fig. 7G). This would mislead users to conclude
that Shih-Tzu and Boxer dogs are easily confused. However,
this is not correct as Boxer dogs do not have long hairs,
making them easily distinguishable from Shih-Tzu dogs.

Identifying misclassifications within clusters. E1 also won-
dered about the confusion within the displayed clusters. There-
fore, he selected an area without ambiguous samples (Fig. 7B)
to zoom in and expanded the clusters. After zooming, E1 ex-
amined the representative images and found an interesting one
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Fig. 6. Grid visualizations generated by Zhou et al.’s method and our method on different datasets.
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(Fig. 1A). This is an image of a tiger, but it was classified as
a domestic cat. Wondering why this image was misclassified,
E1 selected an area around this image to further zoom in
(Fig. 1B) and expanded the cluster “domestic cat” into three
sub-clusters. As the misclassified image was in the middle-
left part of the selected area, E1 first checked the middle-left
part of the new grid visualization. He immediately identified
more misclassified tigers (Fig. 1D). By checking their ground
truth, E1 found that these images were mislabeled as tiger cats
because both of these two breeds had black stripes on their
bodies. This led to the misclassifications. On the contrary, by
checking the middle-left part of the grid layout generated by
Zhou et al.’s method, only several correctly classified tiger
cats were identified (Fig. 1C). This hindered the identification
of the root causes of the misclassifications.

VI. EXPERT FEEDBACK AND DISCUSSION

After the use case, we conducted interviews with four
machine learning experts to collect feedback, including E1 and
three newly invited ones (E5, E6, and E7). We introduced the
use case to the new experts and allowed them to independently
explore the tool before the interviews. The expert feedback
on the usability of our method was generally positive. They
also identified several limitations, which highlighted areas for
further research and development.

A. Usability

Efficient exploration of large-scale datasets. All the experts
appreciated the efficient exploration of large-scale datasets
supported by our method. “It is impressive to explore hundreds
of thousands of samples with this tool. Currently, to find
samples of interest in large-scale datasets, I have to write one-
off scripts to process the data. This is much more tedious
and inefficient than using this tool.” E5 commented. E6

was impressed by the hierarchical exploration environment

supported by our method. He said, “It enables me to have
an overview of the data first. Then I can examine the areas
of interest, such as those with many ambiguous samples, for
more detailed analysis.”

Facilitating inferences on model performance. E7 noted the
clarification of ambiguous samples near the boundaries. He
commented that this reduced false inferences on model per-
formance. In his current practice, E7 used t-SNE [35] and grid
layouts [6], [7] to examine the model predictions on samples,
especially ambiguous samples. However, he often found that
many ambiguous samples were placed near the centers of their
associated clusters. This hindered him from identifying which
classes these ambiguous samples were confused with. By
placing ambiguous samples near the boundaries, such classes
can be quickly identified to facilitate the analysis of root causes
of ambiguous samples (e.g., Figs. 7C and 7E). E6 also shared
one experience: although some classes might have ambiguous
samples but were not adjacent, users could analyze their
ambiguous samples by filtering out other irrelevant classes.

Easy to track samples. The experts also acknowledged the
capacity of our method to preserve stability. E1, who had used
Zhou et al.’s method, especially liked this stability preserva-
tion. When using Zhou et al.’s method, E1 often found that the
stability of samples is not preserved when zooming in. This
usually led to additional efforts to find the samples of interest
he identified before zooming in. By preserving stability, our
method reduces these additional efforts. “For example, when
I zoomed in the area with a misclassified tiger, I quickly
identified many misclassified tigers with similar patterns in
this area. This saved me a lot of time and efforts.” He said.

B. Limitations and Future Work

Generalization to multi-modal data. In the current imple-
mentation, our method primarily analyzes image data. How-
ever, multi-modal data, such as meteorological data, is more
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Fig. 7. The grid visualizations (a) before zooming; (b) generated by our method; (c) generated by Zhou et al.’s method.
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commonly used in real-world applications. Effective analysis
of such data requires not only examining their content but also
understanding the relationships between different modalities.
For example, understanding the relationships between precipi-
tation data and cloud radar data can elucidate the mechanisms
driving precipitation processes [41]. However, integrating dif-
ferent modalities into a single grid layout while maintain-
ing their interrelationships poses significant challenges. For
example, when projecting images and the labels of objects
in images, directly using existing grid layout methods treats
images and object labels equally. This causes the object names
to collapse together because object labels are more similar
to each other than the images. Moreover, since the images
have fixed sizes while the labels vary in size, arranging
them compactly on a 2D plane becomes an NP-hard packing
problem, which is also non-trivial. Thus, investigating how
to adapt our method to accommodate multi-modal data is a
promising future research direction.

Formal user studies on usability. Although our method is
developed in collaboration with machine learning experts, its
applicability extends beyond the domain of machine learning
because it is agnostic to the definition of clusters and am-
biguous samples. For example, in graph analysis, communities
within a graph can be treated as clusters, while nodes that
belong to multiple communities are analogous to ambiguous
samples. Our method can be applied to analyze both communi-
ties and ambiguous samples in such domains. However, in our
current evaluation, we only invited experts from the field of
machine learning to evaluate the effectiveness of our method.
It may limit the validity of our findings as the machine learning
experts do not fully represent the users from other domains.
Hence, it would be valuable for future research to conduct user
studies with a more diverse set of users from different domains
for evaluating the effectiveness and efficiency of our method.

VII. CONCLUSION

In this paper, we present a hierarchical fuzzy-cluster-aware
grid layout method for hierarchical exploration of large-scale
datasets. The key feature of our method is a two-step op-
timization strategy to facilitate fuzzy cluster analysis while
maintaining visual continuity for users during the exploration.
This strategy consists of a cluster-aware partition method
to enhance cluster perception while maintaining cluster-level
stability, and a sample assignment method to maintain sample-
level stability and place ambiguous samples near the bound-
aries. The effectiveness of our method is demonstrated by
its better quantitative results compared with the baselines, its
utility in model debugging showcased through the use case,
and the positive feedback from machine learning experts.
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