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APPENDIX A: GRID VISUALIZATIONS IN THE REQUIREMENT ANALYSIS

In Tab. 1, we list all the grid visualizations in the toolkits used by the experts and their disadvantages. In summary, all these grid visualizations are
less effective in analyzing fuzzy clusters, and most of them cannot support the analysis of large-scale datasets. This motivated us to develop a new
tool, which can support hierarchical exploration and analysis of fuzzy clusters in large-scale datasets.

APPENDIX B: DYNAMIC WEIGHT ADJUSTMENT

Since the dynamic weight adjustment is utilized more than once in our method, we give a general example to demonstrate how it works. Suppose
that we are optimizing the following function:

min
θ

µ1O1 +µ2O2 +µ3O3.

Here, O1, O2, and O3 are three objectives to optimize. Weights µ1, µ2, and µ3 balance the three terms and are determined with the multi-task
learning method [6]. The key idea of the multi-task learning method is dynamically increasing the weights of the terms that are not well-optimized
so that they can be further improved. The degree of optimization is measured by:

∆(Oi,θ) = (Oi(θ)−Omin
i )/(Omax

i −Omin
i ) for i = 1,2,3.

Omax
i and Omin

i are the maximum and minimum values of the i-th objective, respectively. Since determining the exact values of Omax
i and Omin

i is
challenging, we used two simple strategies to approximate their values. In particular, Omin

i is approximated as the value of the i-th objective when
the i-th objective is optimized only, and Omax

i is approximated as the maximum value of the i-th objective when the other ones are optimized:

Omin
i = min

θ
Oi,

Omax
i = max

j ̸=i
Oi(θ j) where θ j = argmin

θ
O j.

(1)

Initially, µ1, µ2, and µ3 are set as 1 and ∆(O1,θ), ∆(O2,θ), and ∆(O3,θ) are calculated. Then, µ1, µ2, and µ3 are updated:

µi = µi + Ii ·2−k, for i = 1,2,3. (2)

Ii = 1 if ∆(Oi,θ) is the largest among ∆(O1,θ), ∆(O2,θ), and ∆(O3,θ). Ii = 0 if ∆(Oi,θ) is the middle value, and ∆(Oi,θ) =−1 if ∆(Oi,θ) is
the smallest. k is the current iteration number. Once µ1, µ2, and µ3 are updated, this process is repeated again until the layout process converges.

APPENDIX C: SIMULATED ZOOM-IN OPERATIONS IN THE QUANTITATIVE EXPERIMENTS

In the quantitative experiments, the three baselines (Zhou et al.’s method [8], DendroMap [5], and LAS [4]) and our method use different zoom-in
operations.
Zhou et al.’s method, LAS, and our method. For Zhou et al.’s method, LAS, and our method, as users can freely select areas of any positions
and sizes in the grid layouts for zooming, we use the same zoom-in operations for them. Specifically, we simulated several zoom-in operations by
randomly selecting areas in the grid layouts (e.g. , Fig. 1(a)).
DendroMap. For DendroMap, all samples are organized into a static binary hierarchy. At each time, several nodes in the binary hierarchy are
displayed as a treemap. During the exploration, users can only select one treemap node for zoom-in. Fig. 1(b) shows an example of such a
zoom-in operation.

APPENDIX D: FULL QUANTITATIVE EXPERIMENT RESULTS

Experiment detials. For each dataset, we evaluate the baselines and our method with different grid sizes. For the comparison with Zhou et al.’s
method and LAS, we use sizes of 30×30, 40×40, and 50×50 for experiments. For the comparison with DendroMap, its grid sizes cannot be
specified directly. Instead, only the sizes of the images can be specified to change the grid sizes. Therefore, we set the sizes of the images as
30px, 20px, and 16px in a display with a resolution of around 1700×1060. These three image sizes correspond to grid sizes of around 30×30,
40×40, and 50×50.
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Table 1: The grid visualizations in the toolkits used by the experts.

Tool names Grid visualizationsin the toolkits Analyzinglarge-scale datasets Analyzingfuzzy clusters

FiftyOne [7] ✗ ✗

Lightly [2] ✗ ✗

Know Your Data [1] ✗ ✗

TensorBoard [3] ✗ ✗

Zhou’s method [8] ✓ ✗

For the comparison between our method, Zhou et al.’s method, and LAS, we simulated 150 zoom-in operations for each dataset and each grid
size in both methods. For the comparison between our method and DendroMap, as the zoom-in operations are restricted to the treemap nodes, the
number of total possible zoom-in operations is limited. Therefore, we first simulated 30 zoom-in operations for DendroMap. Then, for each
zoom-in operation, we randomly select five areas with the same grid size in our method. As a result, a total of 150 grid layouts were generated for
our method.
Results. For the comparison between our method and Zhou et al.’s method, Tabs. 2 to 4 show the comparison of compactness, convexity,
proximity, stability, and ambiguity on 3 datasets. For the comparison between our method and LAS, Tabs. 5 to 7 show the results of both methods
on 3 datasets. For the comparison between our method and DendroMap, Tabs. 8 to 10 show the results of both methods on 3 datasets.



(a) (b)

Fig. 1: Zoom-in operation examples of (a) Zhou et al.’s method, LAS, and our method; (b) DendroMap. Note that each color in (a) corresponds to a cluster in the
input hierarchy of the dataset, while a treemap node (rectangle) in (b) corresponds to a node in the static binary hierarchy organized by DendroMap.

Table 2: Comparison of Zhou et al.’s method and ours in CIFAR-100. ↑ (↓) indicates the higher (lower) is better.

Conv. type Size Method Comp. ↓ Conv. ↑ Prox. ↑ Stab-shape ↑ Stab-position ↓ Stab-sample ↓ Ambi. ↓

Triple
ratio

30×30 Zhou et al.’s method 0.021 0.997 598.3 0.73 0.092 181.2 1.16
Ours 0.021 0.996 618.0 0.92 0.063 0.3 0.97

40×40 Zhou et al.’s method 0.016 0.997 527.6 0.77 0.078 563.9 1.98
Ours 0.016 0.997 566.9 0.94 0.061 0.7 1.61

50×50 Zhou et al.’s method 0.016 0.998 456.9 0.76 0.088 1475.7 3.30
Ours 0.016 0.998 518.9 0.95 0.052 1.7 2.66

Perimeter
ratio

30×30 Zhou et al.’s method 0.022 0.930 585.9 0.64 0.121 196.0 1.23
Ours 0.023 0.965 624.0 0.89 0.081 0.7 0.94

40×40 Zhou et al.’s method 0.018 0.928 513.1 0.68 0.097 607.0 2.04
Ours 0.018 0.964 562.9 0.90 0.075 1.2 1.56

50×50 Zhou et al.’s method 0.017 0.927 449.5 0.65 0.105 1557.9 3.28
Ours 0.017 0.970 515.0 0.91 0.074 3.4 2.80



Table 3: Comparison of Zhou et al.’s method and ours in iNat2021-mini. ↑ (↓) indicates the higher (lower) is better.

Conv. type Size Method Comp. ↓ Conv. ↑ Prox. ↑ Stab-shape ↑ Stab-position ↓ Stab-sample ↓ Ambi. ↓

Triple
ratio

30×30 Zhou et al.’s method 0.025 0.997 385.7 0.72 0.225 147.9 5.27
Ours 0.025 0.996 432.0 0.93 0.144 1.2 3.71

40×40 Zhou et al.’s method 0.020 0.996 364.9 0.61 0.282 432.4 9.14
Ours 0.019 0.997 414.3 0.94 0.144 4.8 6.56

50×50 Zhou et al.’s method 0.020 0.996 350.5 0.63 0.241 1159.8 15.23
Ours 0.018 0.998 415.7 0.94 0.139 14.5 10.10

Perimeter
ratio

30×30 Zhou et al.’s method 0.033 0.920 369.1 0.58 0.261 163.3 6.74
Ours 0.029 0.965 420.0 0.92 0.146 1.3 3.71

40×40 Zhou et al.’s method 0.026 0.914 345.6 0.51 0.288 453.5 11.00
Ours 0.022 0.965 410.6 0.90 0.154 5.2 6.68

50×50 Zhou et al.’s method 0.028 0.897 315.5 0.51 0.269 1127.0 20.95
Ours 0.022 0.966 413.2 0.92 0.147 12.8 11.23

Table 4: Comparison of Zhou et al.’s method and ours in ImageNet-1k. ↑ (↓) indicates the higher (lower) is better.

Conv. type Size Method Comp. ↓ Conv. ↑ Prox. ↑ Stab-shape ↑ Stab-position ↓ Stab-sample ↓ Ambi. ↓

Triple
ratio

30×30 Zhou et al.’s method 0.024 0.996 539.3 0.61 0.268 183.7 3.47
Ours 0.021 0.996 565.2 0.92 0.104 0.7 2.64

40×40 Zhou et al.’s method 0.018 0.995 489.4 0.51 0.320 556.9 5.84
Ours 0.017 0.997 530.8 0.93 0.094 0.9 4.31

50×50 Zhou et al.’s method 0.019 0.995 446.3 0.48 0.336 1561.4 9.13
Ours 0.016 0.998 492.2 0.93 0.099 3.7 7.18

Perimeter
ratio

30×30 Zhou et al.’s method 0.030 0.924 516.5 0.50 0.284 196.8 3.41
Ours 0.027 0.961 553.1 0.88 0.126 0.9 2.53

40×40 Zhou et al.’s method 0.024 0.915 467.0 0.43 0.323 589.9 6.42
Ours 0.020 0.965 526.4 0.88 0.114 2.1 4.47

50×50 Zhou et al.’s method 0.024 0.905 415.9 0.43 0.316 1436.7 12.77
Ours 0.020 0.966 491.0 0.90 0.118 5.4 7.16

Table 5: Comparison of LAS and ours in CIFAR-100. ↑ (↓) indicates the higher (lower) is better.

Size Method Comp. ↓ Conv. ↑ Prox. ↑ Stab-shape ↑ Stab-position ↓ Stab-sample ↓ Ambi. ↓

30×30
LAS 0.039 0.777 646.9 0.40 0.651 398.6 5.78
Ours 0.021 0.996 618.0 0.92 0.063 0.3 0.97
Ours with proximity only 0.041 0.767 663.4 0.39 0.506 379.8 8.15

40×40
LAS 0.029 0.801 576.7 0.40 0.606 1209.2 9.49
Ours 0.016 0.997 566.9 0.94 0.061 0.7 1.61
Ours with proximity only 0.033 0.763 597.6 0.36 0.551 1229.2 11.72

50×50
LAS 0.028 0.795 528.6 0.38 0.654 3274.7 14.17
Ours 0.016 0.998 518.9 0.95 0.052 1.7 2.66
Ours with proximity only 0.034 0.734 541.9 0.35 0.552 3232.9 22.06

Table 6: Comparison of LAS and ours in iNat2021-mini. ↑ (↓) indicates the higher (lower) is better.

Size Method Comp. ↓ Conv. ↑ Prox. ↑ Stab-shape ↑ Stab-position ↓ Stab-sample ↓ Ambi. ↓

30×30
LAS 0.092 0.445 504.3 0.32 0.491 381.5 63.21
Ours 0.025 0.996 432.0 0.93 0.144 1.2 3.71
Ours with proximity only 0.087 0.465 482.5 0.33 0.396 344.5 59.79

40×40
LAS 0.085 0.406 489.8 0.28 0.455 1045.4 111.97
Ours 0.019 0.997 414.3 0.94 0.144 4.8 6.56
Ours with proximity only 0.078 0.416 464.1 0.29 0.433 1046.0 99.72

50×50
LAS 0.090 0.383 467.2 0.25 0.476 2928.0 197.73
Ours 0.018 0.998 415.7 0.94 0.139 14.5 10.10
Ours with proximity only 0.080 0.401 441.2 0.27 0.433 2827.1 169.30



Table 7: Comparison of LAS and ours in ImageNet-1k. ↑ (↓) indicates the higher (lower) is better.

Size Method Comp. ↓ Conv. ↑ Prox. ↑ Stab-shape ↑ Stab-position ↓ Stab-sample ↓ Ambi. ↓

30×30
LAS 0.060 0.619 597.9 0.35 0.580 307.6 24.42
Ours 0.021 0.996 565.2 0.92 0.104 0.7 2.64
Ours with proximity only 0.062 0.606 603.8 0.36 0.437 284.4 27.62

40×40
LAS 0.051 0.604 564.6 0.33 0.541 938.4 35.78
Ours 0.017 0.997 530.8 0.93 0.094 0.9 4.31
Ours with proximity only 0.055 0.580 575.5 0.33 0.501 961.9 42.80

50×50
LAS 0.050 0.601 530.9 0.32 0.590 2591.9 58.28
Ours 0.016 0.998 492.2 0.93 0.099 3.7 7.18
Ours with proximity only 0.055 0.570 542.2 0.31 0.497 2594.7 75.64

Table 8: Comparison of DendroMap and ours in CIFAR-100. ↑ (↓) indicates the higher (lower) is better.

Size Method Comp. ↓ Conv. ↑ Prox. ↑ Stab-shape ↑ Stab-position ↓ Stab-sample ↓ Ambi. ↓

30px DendroMap 0.218 0.624 553.8 0.29 0.334 814.9 2.09
Ours 0.051 0.943 681.0 0.85 0.080 5.6 0.59

20px DendroMap 0.055 0.675 404.8 0.34 0.355 2054.1 4.62
Ours 0.023 0.954 613.7 0.88 0.064 8.4 2.00

16px DendroMap 0.060 0.600 344.6 0.33 0.317 5950.5 9.90
Ours 0.017 0.959 596.1 0.90 0.063 12.9 3.11

Table 9: Comparison of DendroMap and ours in iNat2021-mini. ↑ (↓) indicates the higher (lower) is better.

Size Method Comp. ↓ Conv. ↑ Prox. ↑ Stab-shape ↑ Stab-position ↓ Stab-sample ↓ Ambi. ↓

30px DendroMap 0.136 0.430 349.0 0.35 0.270 317.6 7.87
Ours 0.039 0.959 442.1 0.90 0.144 4.2 3.49

20px DendroMap 0.150 0.376 268.1 0.22 0.287 1116.0 17.19
Ours 0.022 0.962 399.8 0.91 0.140 16.9 6.65

16px DendroMap 0.143 0.336 233.4 0.28 0.306 1970.5 27.49
Ours 0.022 0.966 405.3 0.92 0.142 23.0 9.60

Table 10: Comparison of DendroMap and ours in ImageNet-1k. ↑ (↓) indicates the higher (lower) is better.

Size Method Comp. ↓ Conv. ↑ Prox. ↑ Stab-shape ↑ Stab-position ↓ Stab-sample ↓ Ambi. ↓

30px DendroMap 0.074 0.643 469.6 0.48 0.324 436.1 4.93
Ours 0.040 0.960 541.4 0.85 0.117 2.0 1.84

20px DendroMap 0.069 0.583 361.7 0.40 0.368 447.9 12.19
Ours 0.029 0.964 488.2 0.89 0.111 2.4 4.73

16px DendroMap 0.071 0.562 317.3 0.40 0.348 939.2 15.77
Ours 0.022 0.966 500.0 0.92 0.117 4.5 6.27
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