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Abstract Circle packing is widely used in visualization
due to its aesthetic appeal and simplicity, particularly in tasks
where the spatial arrangement and relationships between data
are of interest, such as understanding proximity relationships
(e.g. , images with categories) or analyzing quantitative data
(e.g. , housing prices). Many applications require preserving
neighborhood relationships while encoding a quantitative
attribute using radii for data analysis. To meet these two
requirements simultaneously, we present a neighborhood-
preserving non-uniform circle packing method, NCP. This
method preserves neighborhood relationships between the
data represented by non-uniform circles to comprehensively
analyze similar data and an attribute of interest. We formulate
neighborhood-preserving non-uniform circle packing as a
planar graph embedding problem based on the circle packing
theorem. This formulation leads to a non-convex optimization
problem, which can be solved by the continuation method.
We conduct a quantitative evaluation and present two use
cases to demonstrate that our NCP method can effectively
generate non-uniform circle packing results.

Keywords Circle packing, neighborhood preservation,
graph embedding, power diagram, force-directed method

1 Introduction
Circle packing, which represents data items using tightly
packed circles, has been widely used in many visualiza-
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tion applications due to its visually appealing and intuitive
representation [1–6]. Recent research has shed light on the
usefulness of neighborhood-preserving circle packing in data
analysis. For example, ArchExplorer [7] represents neural
network architectures as uniform circles of equal radii and
places similar architectures adjacent to each other. This helps
users to compare the performance of architectures with similar
structures and to gain insights into designing architectures.
However, ArchExplorer does not support non-uniform circles,
which limits the analysis of quantitative attributes. Consider
the task of analyzing label noise in a clothing image dataset.
It is difficult to identify images mislabeled as similar classes,
such as ‘knitwear’ mislabeled as ‘sweaters’, because they
have consistent predictions with their neighboring images.
However, since these images usually have higher prediction
uncertainty scores due to their ambiguous content, they can be
easily identified by simultaneously encoding the uncertainty
scores using radii. For example, larger circles along the clus-
ter boundaries between the ‘knitwear’ and ‘sweater’ clusters
(see Fig. 1D) clearly highlight these ambiguous images. This
example highlights the need for a circle packing method that
both preserves neighborhood relationships and encodes a
quantitative attribute using radii. In addition, previous studies
concerning circle packing and cluster-aware methods high-
light the importance of compactness of the layout and the
convexity of clusters in data analysis [8–11].

Based on the above analysis, we aim to simultaneously pre-
serve neighborhood relationships and improve compactness
and convexity, under the constraints that circles do not overlap
and their radii encode the quantitative attribute of interest.
However, these objectives and constraints can conflict. For
example, improving compactness may compromise the ideal
positions for neighborhood preservation. As a result, the key
challenge of neighborhood-preserving non-uniform circle
packing lies in effectively balancing multiple optimization
objectives while satisfying constraints.

To tackle this challenge, we formulate the neighborhood-
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Fig. 1 Using neighborhood-preserving non-uniform circle packing to identify noisy labels in the sampled Clothing dataset: (a) analyzing
images with random noise; (b) analyzing images with content-ambiguity-related noise.

preserving non-uniform circle packing problem as a maximal
planar graph embedding problem. In this graph, nodes rep-
resent circles, edges represent neighborhood relationships
between circles, and the embedding provides the 2D co-
ordinates of each node. This formulation is based on the
circle packing theorem [12], which establishes a one-to-one
correspondence between a non-uniform circle packing and a
maximal planar graph. Using this formulation, we develop a
neighborhood-preserving non-uniform circle packing method
which we call NCP. It is designed to effectively balance the
objectives of neighborhood preservation, compactness, and
convexity, while satisfying size and non-overlap constraints.
To achieve this, we solve the associated multi-objective op-
timization problem with the continuation method [13] that
progressively incorporates different optimization objectives.
Initially, we project data items onto a 2D plane and generate
a maximal planar graph and its initial embedding using the
Delaunay triangulation.This planar graph represents the max-
imal set of neighborhood relationships that we can preserve
after projection. Then, we refine this embedding by pro-
gressively introducing additional optimization objectives for
compactness and convexity while preserving neighborhood
relationships. This refinement integrates a power-diagram-
based method for compactness and a force-directed method
for convexity. The final output is the planar graph embedding
and the corresponding circle packing that simultaneously

preserves neighborhood relationships and enhances com-
pactness and convexity. Our quantitative evaluation shows
that NCP can better preserve neighborhood relationships
between data items than baseline methods. Furthermore,
NCP achieves better convexity while obtaining comparable
compactness. The usability of our method is demonstrated
in two use cases and a user study. Our code is available at
https://github.com/NCP-2024/NCP. To sum up, the main
contributions of this work are:

• formulation of neighborhood-preserving non-uniform
circle packing as a maximal planar graph embedding
problem,

• an optimization method that simultaneously preserves
neighborhood relationships, and improves compactness
and convexity, and

• an open-source library for generating neighborhood-
preserving non-uniform circle packings.

2 Related Work
Depending on whether spatial efficiency is optimized, circle-
related layout methods can be divided into two groups: non-
compact layout methods and compact layout (circle packing)
methods. Non-compact layout methods, such as the Dorling
cartogram [14], place the circles on a 2D plane without
maximizing compactness. In contrast, circle packing methods
aim to optimize spatial efficiency by tightly packing circles,

https://github.com/NCP-2024/NCP
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and are more closely related to our work. As this is an
NP-hard problem, many stochastic optimization methods
have been developed [15], based on genetic algorithms [16],
simulated annealing [17], and adaptive beam search [18].
However, these methods rely on a great deal of trial-and-error,
and require a considerable time to converge. To speed up
the process, faster heuristic methods have been proposed,
which can be categorized into three classes: front-chain-based
methods, power-diagram-based methods, and force-directed
methods [19].

Front-chain-based methods place each circle externally
tangent to those already on the layout boundary [3]. These
boundary circles form the front chain of the layout. Görtler et
al. [2] utilized this method to generate a bubble treemap.
Researchers have also extended this method to visualize
time series data, where preserving the temporal sequence
of data items is crucial [20, 21]. Front-chain-based methods
incrementally place each circle without jointly considering
their relative positions. Thus, attempts to preserve neighbor-
hoods may result in sub-optimal results. This is demonstrated
by our experiments in Section 5.1 (SimiFC). To tackle this
issue, power-diagram-based and force-directed methods si-
multaneously optimize the positions of all circles to preserve
neighborhood relationships.

Power-diagram-based methods employ a power dia-
gram [22] to partition the layout region into non-overlapping
cells and place circles within the corresponding cells [23]. A
power diagram is a weighted Voronoi diagram that partitions
the layout region based on a set of weighted distances. By
iteratively adjusting circle centers to agree with the maxi-
mum inscribed circles of their respective cells and increasing
circle radii, the compactness of the resulting circle packing
is improved. Yu et al. [24] utilized this method to create
photo collages, where each photo was represented as a cir-
cle with a radius proportional to its importance. A similar
idea was also adopted by Liang et al. [25] and Rodrigues et
al. [26]. Force-directed methods treat circles as physical
objects and employ simulated forces to pack them tightly.
Huron et al. [27] utilized gravitational forces and collision
detection to generate a circle packing. This method has been
used in different applications such as enterprise analysis [28]
and social media monitoring [29].

Both power-diagram-based and force-directed methods
have unique advantages in circle packing. Power-diagram-
based methods achieve high compactness efficiently. On
the other hand, force-directed methods provide a flexible
framework for arranging circles based on simulated physical
interactions, allowing the integration of various forces to meet

different optimization objectives. Despite their advantages,
each method also has limitations. Power-diagram-based meth-
ods primarily focus on compactness and may not adequately
preserve neighborhood relationships between circles during
the optimization process. However, without good initializa-
tion, force-directed methods can face difficulties in balancing
multiple competing objectives. For example, attempting to op-
timize both compactness and neighborhood preservation can
introduce forces with conflicting directions, which may lead
to slower convergence and sub-optimal local minima. This
is demonstrated by our experiments in Section 5.1 (FD). To
address these issues, our method generates a neighborhood-
preserving planar graph and then tries to preserve this planar
graph during subsequent optimization. We first employ an
improved power-diagram-based method that simultaneously
considers compactness and neighborhood preservation. The
result is further refined using a force-directed method to
obtain better convexity. This hybrid method leverages the
strengths of both power-diagram and force-directed methods,
producing a better circle packing result.

3 Optimization Objectives and Constraints
To generate a neighborhood-preserving non-uniform circle
packing, we distill the design criteria from existing circle
packing and cluster-aware layout methods. A detailed list is
available in the supplemental materials. We organize these
criteria on two levels: global and local.

The global criteria aim to generate a compact circle packing
and clearly convey information from data. Previous research
has identified three criteria to achieve this goal [3, 23]. First,
achieving high compactness (G1, Fig. 2A) maximizes the uti-
lization of the available display space [23]. Second, circle radii
typically encode quantitative attributes associated with data
items (C1), which enables efficient comparison of quantitative
attributes [20, 21, 24, 30]. Third, ensuring non-overlapping
circles (C2) reduces visual clutter, enhances the readability
of individual circles, and simplifies data analysis [3, 7].

The local criteria focus on two key aspects to facilitate
data analysis: enhancing the perceptual clarity of clusters
and preserving neighborhood relationships within each
cluster. Recent studies have demonstrated that optimizing
the convexity of cluster shapes (G2, Fig. 2B) can improve the
perceptual clarity of clusters and thus facilitate more efficient
cluster analysis [8, 10]. This also aligns with the Gestalt
law of perceptual grouping [31]. Additionally, preserving
neighborhood relationships (G3, Fig. 2C) enhances the
user’s ability to understand inherent structures in data and
accurately identify outliers [32].
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Fig. 3 Correspondence between the circle packing result and the
planar graph: (a) example circle packing result, (b) corresponding
planar graph. Red circle: referenced circle, green circles: its 1-hop
neighbors, blue circles: its 2-hop neighbors.

Accordingly, our circle packing method employs three
optimization objectives (G1–G3) and two hard constraints
(C1–C2):

• G1: Compactness. Create a tightly packed arrangement
of circles to maximize spatial efficiency.

• G2: Convexity. Maintain a convex shape for each cluster
to enhance perceptual clarity.

• G3: Neighborhood preservation. Place circles that rep-
resent similar data items in close proximity within each
cluster to preserve neighborhood contexts.

• C1: Size constraint. Ensure that the radius of each
circle is proportional to its quantitative attribute for
comparative analysis.

• C2: Non-overlap constraint. Arrange the circles without
overlaps to maintain the distinctiveness of each circle.

4 NCP Method
4.1 Planar-Graph-Based Problem Formulation

According to the circle packing theorem [12], a one-to-one
correspondence exists between a non-uniform circle packing
and a maximal planar graph. In this graph, nodes represent cir-
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Fig. 4 The continuation method’s basic idea is to transform the
original non-convex problem into a sequence of smoother ones and
progressively solves them. This strategy guides optimization toward
better regions in the solution space and leads to a better solution.

cles, and edges represent neighborhood relationships between
circles (Fig. 3). Based on this correspondence, achieving
an optimal circle packing is equivalent to identifying an
appropriate planar graph and its embedding for placing cir-
cles. Given n data items and their associated quantitative
attributes {wi}ni=1 as input, our method generates a planar
graph embedding and the corresponding circle packing that
balances neighborhood preservation (Fp), compactness (Fc),
and convexity (Fv), while satisfying the non-overlap (Co)
and size (Cz) constraints. Following common practice, we
adopt a weighted sum [33] to scalarize the multi-objective
optimization problem as a single-objective problem:

argmin{pi},s>0 Fp + αFc + βFv

such that ri = swi,∀i, (Cz),

ri + rj ⩽ ∥pi − pj∥,∀i, (Co),

1 ⩽ i ⩽ n.
(1)

Here, pi is the center of the i-th circle, which is the embedding
coordinate of the corresponding node in the planar graph. The
size constraint (C1) is inherently satisfied by optimizing the
scaling factor s that scales radii ri proportionally to wi, while
the non-overlap constraint (C2) can be achieved by reducing
s to prevent circle overlaps. The parameters α and β, which
balance the impact of the three terms, are determined by a grid
search and set to 0.2 and 1.0 in our implementation. In this
setting, our method delivers near-optimal performance across
all three goals. A detailed sensitivity analysis is provided in
the supplemental material.
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Fig. 5 Pipeline of the NCP method: (a) neighborhood-preserving planar graph initialization generates an initial planar graph that connects
similar data items, (b) power-diagram-based planar graph layout refines the planar graph and produces an intermediate result preserving
both compactness and neighborhood, (c) force-directed refinement compacts the circles and improves convexity.

4.2 Method Overview

Despite having a well-defined optimization objective, the
non-convex nature of the problem and the large number of
local minima present a challenge [34]. An effective way to
overcome this issue is the continuation method [13], which has
been widely used in many learning tasks such as curriculum
learning [35] and semi-supervised learning [36]. As Fig. 4
illustrates, the basic idea of this method is to transform the
original non-convex problem into a sequence of smoother
problems that are easier to solve. Then, it sequentially solves
them from the easiest one to the original one (Fig. 4A–C);
each solution serves as a starting point for solving the next
problem [37]. This strategy guides the optimization toward
more favorable regions in the solution space and thus speeds
convergence [35, 38, 39]. Its effectiveness is demonstrated by
a quantitative evaluation in Section 5.1.

Accordingly, we design a three-step optimization method
that progressively incorporates our three objectives. The
pipeline is shown in Fig. 5. In the first step, neighborhood-
preserving planar graph initialization (Fig. 5(a)), we create a
maximal planar graph that preserves neighborhood relation-
ships as well as possible by maximizing connections between
similar data items. This initial graph serves as the starting point
for subsequent optimization. The two subsequent steps involve
refining the embedding of the graph to optimize compactness
and convexity while preserving neighborhood relationships.
Compactness is prioritized over convexity because it is af-
fected by all circles, whereas convexity is only affected by
circles on cluster boundaries [10]. Thus, in the second step,
power-diagram-based planar graph layout (Fig. 5(b)), we
generate an intermediate result to balance compactness and
neighborhood preservation. In the third step, force-directed
refinement (Fig. 5(c)), we improve convexity while also pre-
serving neighborhood relationships and compactness by using
simulated forces to adjust the circle positions.

4.3 Neighborhood-Preserving Planar Graph Initial-
ization

To generate a neighborhood-preserving planar graph, we
begin by using a projection method to place similar data items
in close proximity. We then generate the edges using Delaunay
triangulation, which is effective in connecting similar data
items without intersections [40]. In this way, we generate a
maximal planar graph in which edges represent neighborhood
relationships between data items, to be preserved during the
following steps.

The projection method is crucial because it decides which
neighborhood relationships will be preserved. To select the
most suitable method, we conducted an experiment on eight
high-dimensional datasets with cluster structures, as used in
Xia et al. ’s work [41]. We identified five candidate projection
methods: t-SNE [42], UMAP [43], PCA [44], MDS [45], and
NMF [46], based on previous studies [41, 47]. To evaluate the
ability of these projection methods to preserve neighborhoods,
we used the neighborhood preservation degree [48, 49], which
calculates how many neighborhoods in the high-dimensional
space are preserved as neighbors in the generated planar
graph.

Fp = − 1

n

n∑
i=1

|ΓG(i) ∩ ΓD(i, ki)|
|ΓG(i) ∪ ΓD(i, ki)|

, ki = |ΓG(i)|, (2)

where G is the generated planar graph, and ΓG(i) = {j |
dG(i, j) = 1, li = lj ,∀1 ⩽ j ⩽ m, j ̸= i} denotes the
1-hop neighbors of the i-th data item with the same cluster
label. dG(i, j) is the graph distance between the i-th and j-th
data items, and li and lj are their cluster labels. ΓD(i, ki)

denotes the ki nearest neighbors of the i-th data item in the
high-dimensional space based on data similarity.

The experimental results show that t-SNE best preserves
neighborhoods, achieving an average neighborhood preserva-
tion degree of 0.392. Notably, t-SNE yielded the best result in
seven out of eight cases, and ranked second in the remaining
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Fig. 6 Enhancing neighborhood preservation in the power-
diagram-based algorithm: (a) initial edge p1p2 (green); (b) node
movements in Step 1 cause an edge change: the original edge p1p2
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moving p1 in the Step 2, the change in edges is mitigated.

case. The circle packing results for various initialization meth-
ods are also available in the supplemental material, further
illustrating t-SNE’s qualitative advantages. Therefore, we use
t-SNE in our implementation. Users could instead employ
other methods based on their analysis needs.

4.4 Power-Diagram-Based Planar Graph Layout

Following the optimization of neighborhood preservation, the
second step aims to improve compactness with the size and
non-overlap constraints. To meet this additional objective and
the constraints, we refine the embeddings of the previously
generated neighborhood-preserving planar graph:

argmin{pi}n
i=1,s>0 Fp + αFc

such that Cz, Co,
(3)

The first term (Fp) denotes neighborhood preservation, and
the second term (Fc) denotes compactness. For the first term,
instead of directly optimizing the discrete termFp as defined in
Eq. (2), we use a continuous formF

′

p to facilitate optimization.
Here,F ′

p =
∑m

i=1

∑
j∈ΓG(i) ∥pi − pj∥/s, which encourages

circle pairs connected by edges to remain close. For the
second term, we follow the method in MosaicSets [9] and
use Fc =

∑m
i=1 ∥pi −O∥/s, which encourages circles to be

placed near the center O to enhance compactness.
To solve the optimization problem defined in Eq. (3),

we leverage the power-diagram-based method developed by
Zhao et al. [23] to improve compactness while ensuring the
constraints. This method moves nodes toward the centers of
the maximum inscribed circles within their respective Voronoi
cells and enlarges the scaling factor. However, this may change
neighborhood relationships between circles, which leads to
the removal or addition of corresponding edges in the planar
graph. Fig. 6 provides an illustrative example where the
original edge p1p2 (in green) is removed, and a new edge
p3p4 (in red) is added after movingp1. This is becausep1 now
lies outside the weighted circumcircle of p2p3p4 (the orange
dotted circle) [50]. To address this issue, we move p1 towards

(a) (b) (c)

Fig. 7 Parallel computation of power diagrams: (a) cluster nodes
based on their initial positions and partition the layout region; (b)
redistribute the nodes in each cluster with 2D transformations; (c)
construct the power diagram for each cluster.

the center of their corresponding weighted circumcircles
p2p3p4 (Figs. 6(b)–(c)). For each adjustment, we start from
a predefined movement distance and then iteratively reduce it
by half until the objective function (F ′

p + αFc) is improved.
This ensures fast convergence when alternatively optimizing
compactness and neighborhood preservation.

In addition, we propose two practical improvements to ac-
celerate this method. First, given the time-consuming nature of
calculating the maximum inscribed circle center within a cell,
we approximate it by calculating its centroid, which is less
computationally demanding [51]. Second, since NCP focuses
on preserving neighborhood relationships within each cluster,
we parallelize the computation of power diagrams across
different clusters (Fig. 7). We start by clustering the nodes
based on their positions using k-means [52], with the optimal
number of clusters selected via the silhouette score [53]. The
layout region is divided into several sub-regions based on
the clustering result (Fig. 7(a)). To improve compactness,
we restrict the size of each sub-region proportionally to the
total area of circles within each cluster using the capacity-
constraint power diagram [54]. To more evenly distribute
the corresponding nodes in each sub-region, we apply 2D
transformations, including translation, rotation, and scaling,
to the sub-graph within each cluster (Fig. 7(b)), aiming to
enlarge it and fill the sub-region as much as possible. These
transformations preserve the edges in the initial planar graph
and minimize the need for additional node movements in
subsequent optimization, which contributes to better neigh-
borhood preservation. Finally, the power diagram of each
cluster is generated concurrently (Fig. 7(c)).

4.5 Force-Directed Refinement

The final step incorporates convexity, which brings us to the
original problem of jointly optimizing all objectives while
satisfying the size and non-overlap constraints:

argmin{pi}n
i=1

F
′

p + αFc + βFv,

such that Cz, Co.
(4)
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The first two terms encourage neighborhood preservation
(F ′

p) and compactness (Fc), as defined in the second step.
The third term (Fv) is introduced to promote the formation
of convex cluster shapes by adjusting the circles on cluster
boundaries. Inspired by EulerSmooth [55], the basic idea is
to move the circles on the cluster boundary toward the convex
hull, such as the blue circle ci in Fig. 8(a). The key is to
determine the movement directions for these circles. For each
circle on the cluster boundary, we identify two neighboring
circles on the left and right that are also on the boundary and
intersect the convex hull. The goal is to improve the convexity
in this local region without compromising neighborhood
preservation. To achieve this, we move the circle to close this
gap while minimizing movements of other circles to preserve
the neighborhood structure. For example, in Fig. 8(a), we
move ci to close the gap between adjacent circles cj and ck that
touch the convex hull. These two circles require only minimal
movement to accommodate ci between them. Specifically,
suppose the convex hull touches cj and ck at points A and
B, with Mi representing the midpoint of AB. We identify
the point Qi on ci that is closest to Mi. We then move ci

from Qi towards Mi. Accordingly, Fv =
∑

i∈δ ∥Qi −Mi∥,
where δ represents the set of circles on the cluster boundaries
(Fig. 8(b)).

To solve the optimization problem defined in Eq. (4), we
employ a force-directed method to refine the circle positions.
Here, the forces are set to the negative gradient of the objective
function. To avoid overlaps between circles, we utilize a
2D physics engine, Box2D [56], to simulate forces. The
simulation velocity is adjusted using a linear annealing decay
for better convergence.

5 Evaluation
In this section, we first present a quantitative evaluation to
show the effectiveness of the proposed NCP method. We then
present two use cases to demonstrate how NCP can be used
to facilitate data analysis.

5.1 Quantitative Evaluation
5.1.1 Experimental Setting
Datasets The quantitative evaluation was conducted on
eight high-dimensional datasets with cluster structures, pre-
viously used in Xia et al. ’s work [41]. These datasets vary in
size from 155 to 1083 data points with 7 to 192 dimensions.
In practical applications, the number of samples simulta-
neously displayed in non-uniform circle packing typically
does not exceed one thousand [1]. Displaying more samples
reduces the circle radii, making it difficult to discern radius
differences on standard monitors. Similarity between data
items was computed based on the features provided in the
datasets. The radii of the circles were generated from two
distinct uniform distributions, one spanning from 0.1 to 1 and
the other from 0.5 to 1. The two distributions were employed
to simulate cases where the circle radii had large or small
variance.

Baseline methods As no existing circle packing methods si-
multaneously consider non-uniform circles and neighborhood
preservation, we extended two representative circle packing
methods to provide baselines. In addition, we considered a
force-directed method, to demonstrate the effectiveness of the
continuation method. We did not include a power-diagram-
based method because it fails to produce a compact circle
packing result.

SimiFC (Similarity-aware Front-Chain). We extended the
front-chain-based method [3] to improve neighborhood preser-
vation by improving its strategy for placing circles. In each
iteration, it first identifies the position outside the front chain
that is closest to the layout center and then places the circle
that maximizes neighborhood preservation.

AEF (ArchExplorer + Force-directed). The neighborhood-
preserving circle packing method in ArchExplorer places
uniform circles on a hexagonal grid and then greedily swaps
them to maximize neighborhood preservation. We extended
this method to support the packing of non-uniform circles by
combining it with the force-directed method. The extension
is referred to as AEF. AEF initially determines the positions
of circles using the original method without considering their
radii. The positions are then refined using the force-directed
method described in Section 4.5.
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Table 1 Performance comparison in terms of neighborhood preservation (NP1, NP2), compactness, and convexity.

Dataset
NP1 NP2 Compactness Convexity

Baseline Ours Baseline Ours Baseline Ours Baseline Ours
SimiFC AEF FD NCP SimiFC AEF FD NCP SimiFC AEF FD NCP SimiFC AEF FD NCP

Boston 0.255 0.235 0.285 0.341 0.270 0.287 0.394 0.423 0.865 0.882 0.889 0.889 0.507 0.665 0.837 0.809
Dermatology 0.220 0.256 0.290 0.311 0.238 0.278 0.370 0.385 0.858 0.868 0.876 0.874 0.582 0.683 0.796 0.790
Ecoli 0.248 0.233 0.298 0.344 0.242 0.271 0.378 0.411 0.845 0.876 0.880 0.874 0.633 0.821 0.802 0.831
ExtYaleB 0.371 0.321 0.406 0.422 0.364 0.355 0.476 0.487 0.850 0.876 0.872 0.868 0.590 0.782 0.788 0.806
MNIST64 0.203 0.203 0.276 0.306 0.207 0.224 0.349 0.372 0.833 0.866 0.867 0.863 0.455 0.713 0.821 0.827
Olive 0.210 0.199 0.271 0.328 0.213 0.235 0.382 0.414 0.844 0.866 0.875 0.862 0.554 0.713 0.784 0.817
Weather 0.369 0.320 0.352 0.448 0.355 0.366 0.527 0.567 0.850 0.872 0.877 0.868 0.389 0.683 0.843 0.795
World12D 0.194 0.253 0.368 0.379 0.252 0.305 0.462 0.463 0.866 0.888 0.900 0.896 0.596 0.630 0.782 0.809
Average 0.259 0.253 0.318 0.360 0.268 0.290 0.417 0.440 0.851 0.874 0.880 0.874 0.538 0.711 0.807 0.811

(a) Performance when circle radii have a large variance.

Dataset
NP1 NP2 Compactness Convexity

Baseline Ours Baseline Ours Baseline Ours Baseline Ours
SimiFC AEF FD NCP SimiFC AEF FD NCP SimiFC AEF FD NCP SimiFC AEF FD NCP

Boston 0.257 0.232 0.315 0.365 0.251 0.260 0.396 0.437 0.851 0.870 0.881 0.888 0.557 0.657 0.842 0.833
Dermatology 0.233 0.284 0.319 0.364 0.259 0.278 0.378 0.399 0.845 0.868 0.872 0.875 0.589 0.691 0.842 0.845

Ecoli 0.222 0.257 0.360 0.350 0.236 0.286 0.415 0.416 0.841 0.862 0.870 0.866 0.516 0.767 0.820 0.821
ExtYaleB 0.393 0.375 0.442 0.476 0.349 0.392 0.486 0.505 0.842 0.864 0.870 0.862 0.500 0.757 0.801 0.808
MNIST64 0.215 0.235 0.274 0.327 0.203 0.231 0.335 0.375 0.828 0.856 0.874 0.854 0.460 0.720 0.828 0.808

Olive 0.219 0.235 0.243 0.342 0.215 0.245 0.322 0.422 0.838 0.861 0.870 0.858 0.489 0.615 0.809 0.839
Weather 0.408 0.355 0.177 0.483 0.363 0.365 0.232 0.578 0.837 0.865 0.891 0.860 0.366 0.658 0.743 0.816

World12D 0.306 0.305 0.399 0.380 0.310 0.320 0.476 0.477 0.857 0.870 0.896 0.885 0.480 0.632 0.800 0.796
Average 0.281 0.285 0.316 0.386 0.273 0.297 0.380 0.451 0.842 0.864 0.878 0.868 0.495 0.687 0.810 0.825

(b) Performance when circle radii have a small variance.

FD (Force-Directed). This basic method skips the
power-diagram-based planar graph layout step. Specifically,
we first placed circles based on t-SNE projection and then
directly optimized their positions using the force-directed
method. The weights in the optimization objective Eq. (4)
are the same as those used in the NCP method.

Parameters The perplexity of t-SNE was set to 15 to give
the best neighborhood preservation, as determined by a grid
search. The force-directed method ran 1, 250 iterations for
NCP and AEF, and 10, 000 iterations for FD to guarantee
convergence on all datasets.

5.1.2 Measures

We evaluated the circle packing results based on neighborhood
preservation, compactness, and convexity. The scores of these
measures range from 0 to 1; higher scores indicate better
results.

Neighborhood preservation This measure quantifies
neighbor overlap between the high-dimensional data and
their 2D embeddings. It is defined based on the neighborhood

Envelope

Convex hull

Circles

Fig. 9 Envelope (thick orange curve) and convex hull (thin orange
curve) of a set of tightly packed circles.

preservation degree from Eq. (2):

NP1 =
1

m

m∑
i=1

|ΓG(i) ∩ ΓD(i, ki)|
|ΓG(i) ∪ ΓD(i, ki)|

, ki = |ΓG(i)|.

Moreover, to assess the capability to preserve a larger range
of neighborhoods, we introduce NP2 to consider 2-hop
neighbors of each node in the planar graph:

NP2 =
1

m

m∑
i=1

|Γ′

G(i) ∩ ΓD(i, k
′

i)|
|Γ′

G(i) ∪ ΓD(i, k
′
i)|

, k
′

i = |Γ
′

G(i)|.

Here Γ
′

G(i) = {j | dG(i, j) ⩽ 2, li = lj ,∀1 ⩽ j ⩽ m, j ̸=
i} is the set of 2-hop neighbors of the i-th node.
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Compactness We evaluated compactness following
Liang et al. [25]. Compactness is defined as the ratio of
the total area covered by all circles to the area of their enve-
lope:

Compactness =
Area(∪ici)

Area(Env(∪ici))
,

where ci denotes the i-th circle. For any region Ω, Area(Ω)

denotes its area. Env(Ω) denotes its envelope, which is
defined as the shape formed by its outer boundary [2] (see the
thick orange curve in Fig. 9).

Convexity We evaluated convexity based on a popular
measure that is defined as the ratio of the area of a shape’s
envelope to that of its convex hull [57]. Since circles within a
cluster may be divided into multiple connected components
in the results, the envelope of a cluster is defined as the
union of the envelopes of such connected components. The
convex hull of a cluster is defined in the same manner.
Consequently, the convexity of the j-th cluster is expressed as
Area(Env(∪li=jci)) / Area(CH(∪li=jci)), where CH(Ω)

denotes the convex hull of Ω (the light orange curve in Fig. 9).
The convexity of a circle packing is defined as the average
convexity across all clusters:

Convexity =
1

L

L∑
j=1

Area(Env(∪li=jci))

Area(CH(∪li=jci))
,

where L is the number of clusters.

5.1.3 Results

Our experimental results are presented in Table 1. Overall, our
method (NCP) achieved performed better than the two baseline
methods (SimiFC and AEF) in terms of neighborhood preser-
vation and convexity while showing comparable performance
on compactness. The reason for the lower neighborhood
preservation and convexity of the two baseline methods is that
they adopt greedy strategies instead of projection methods
to place circles. Such strategies result in suboptimal circle
arrangements for preserving neighborhood relationships and
do not guarantee the formation of convex cluster shapes.
Consequently, we mainly focus on the comparison between
NCP and the basic method FD.

The results show that NCP achieves better convexity and
neighborhood preservation without sacrificing compactness:
NCP obtains an improved solution via the continuation
method. In contrast, FD directly optimizes the final objective
function, making it prone to becoming trapped in unfavorable
local optima, a common pitfall in circle packing optimization.
Specifically, for neighborhood preservation, NCP achieved

Arc-shaped
clusters

Separated
sub-clusters

A

B

(a) t-SNE Projection

(b) SimiFC (c) AEF

(d) FD (e) NCP

Fig. 10 Comparison of circle packing results generated by different
methods on the MNIST64 dataset.

average improvements of 0.042 and 0.070 for NP1, and 0.023
and 0.071 for NP2 under the two cases of radii variances.
Since NCP and FD use the same planar graph initialization,
this gap was caused by the subsequent optimization process.
Unlike FD, which optimizes these competing objectives si-
multaneously, NCP utilizes the continuation method to add
new objectives progressively, reducing the risk of becoming
trapped in local minima in the complex original problem. NCP
achieves a similar average compactness to FD: both methods
adopt the force-directed method as the final step in their
optimization processes, which leads to similar compactness.
This conclusion is also supported by the result of AEF, which
also employs the force-directed method and achieves similar
compactness. NCP showed average convexity improvements
of 0.004 and 0.015 in the two cases of radii variances. The
main reason is the parallelized computation strategy in our
enhanced power-diagram-based planar graph layout which
creates the power diagram for each cluster in a convex sub-
region, providing an initialization in which the clusters have
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more convex shapes for subsequent force-directed refinement.
Therefore, it is easier for NCP to achieve better convexity.

We also visually compared the circle packing results of
these methods to provide a more intuitive explanation of
their differences. Full results for all datasets are provided
in the supplemental material. Fig. 10 shows the results for
MNIST64 where the circle radii have a large variance. SimiFC
generates arc-shaped clusters (Fig. 10(b)), and AEF may
separate a cluster into several sub-clusters (the three sub-
clusters of brown circles in Fig. 10(c)). Compared to the
projection result (Fig. 10(a)), these two layout results distort
the cluster structures and hinder cluster analysis. In contrast,
FD (Fig. 10(d)) and NCP (Fig. 10(e)) well preserve the cluster
structures and their relative positions, making clusters easy
to recognize. However, FD displaces circles more frequently.
In Fig. 10A, one pink circle with thick borders is incorrectly
placed inside the cluster of orange circles. This displacement
could lead to incorrect identification of outliers. Instead,
NCP correctly places these circles in their respective clusters.
Furthermore, FD creates irregular and concave boundaries
between clusters, such as the boundaries of the light green
cluster in Fig. 10B. In contrast, NCP forms smooth and convex
boundaries between the clusters.

5.1.4 Running Time
We evaluated the running time of different circle packing
methods on a desktop PC with a 3.00 GHz Intel i9-13900K
CPU. We report results averaged over five trials and two cases
of radii variances per dataset to reduce randomness. Table 2
shows that SimiFC was the fastest since it employed a simple
greedy strategy to place circles. However, it does not produce
satisfactory packing results, as reported in Table 1. The other
three methods take longer time because they incorporate
a force-directed method. Among them, NCP is the fastest
and generates circle packing results for a dataset with about
1, 000 data items in 2 seconds. Its high efficiency is due to
the integration of the power-diagram-based method, which
provides a good starting point for the force-directed method
and thus leads to faster convergence (1, 250 iterations vs.
10, 000 iterations for FD).

5.2 Use Cases

We showcase the application of NCP to data analysis using two
real-world datasets: Clothing [58] and Boston Housing [59].

5.2.1 Clothing
In this use case, we illustrate how NCP can be applied to
identify and analyze label noise in an image classification
dataset. We used the Clothing dataset, which contains 14

Table 2 Comparison of running time (in seconds).
Dataset Size SimiFC AEF Ours-FD Ours-NCP
Boston 155 0.004 0.717 4.073 0.212
Dermatology 259 0.010 1.509 6.376 0.480
Ecoli 336 0.018 2.161 9.598 0.534
ExtYaleB 320 0.018 1.745 9.399 0.760
MNIST64 1,083 0.219 12.108 17.587 2.002
Olive 572 0.059 3.352 9.744 0.965
Weather 366 0.023 2.404 8.906 0.706
World12D 151 0.004 0.782 2.761 0.349

Circles of interest
Fig. 11 Visualizing the Clothing dataset with a scatterplot.

categories of clothing images, with 38.5% of them reported
as mislabeled. Alice is a graduate student. She aimed to
identify and analyze the label noise in this dataset. To achieve
this, Alice trained a ResNet-50 model (accuracy: 76.4%) on
this dataset for feature extraction and similarity calculation.
Subsequently, she randomly sampled 700 images for further
analysis. Based on her prior knowledge, Alice focused on two
types of label noise. The first type is random noise, which
is often introduced by spammer annotators and is, therefore,
irrelevant to the image content. For example, an image of
‘sweater’ is mislabeled as ‘shawl’, even though there are clear
visual differences between the two categories. Despite such
mislabeling, these images can usually be correctly predicted
as their ground-truth labels with high confidence scores. The
second type is content-ambiguity-related noise. They mainly
come from images with ambiguous content that is hard to
categorize, such as the images of ‘knitwear’ and “sweater.”
These images are usually predicted with low confidence
scores, which also means high uncertainty scores.

Analyzing random noise. Initially, Alice visualized the
projection results of the sampled images using a scatterplot
(Fig. 11). She used colors to encode their annotated labels
and radii to encode the confidence scores, a larger radius
indicating a higher score. This facilitated the identification of
images with annotated labels that differ from their neighbors
and have high prediction confidence scores. Alice observed a
cluster mainly consisting of light blue circles, while it also
included a few circles of different colors. However, the circles
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overlapped each other, causing visual clutter which hindered
the analysis. To address this issue, she then employed the
NCP method to generate a neighborhood-preserving circle
packing result with non-overlapping circles that facilitated
sample-level analysis (Fig. 1(a)). The result preserved the
cluster structures well, as circles of the same color are mostly
grouped together. Alice turned her attention to the previously
identified cluster and easily identified those large circles of
different colors placed inside this cluster. She suspected that
they represented images with random noise because their
confidence scores were high. After examining the associated
images, Alice confirmed that several images of ‘T-shirt’ were
mislabeled as other labels, such as ‘knitwear’, ‘shirt’, ‘vest’,
and ‘underwear’ (Fig. 1(a)). She also checked other regions
with circles that showed similar visual patterns and identified
more images with random noise. For example, in region B, a
brown circle is placed inside the cluster of other blue circles.
It represents a ‘windbreaker’ image mislabeled as a ‘suit’.
Similarly, in region C, an image of a ‘shirt’ is mislabeled
as a ‘jacket’ (purple circle), placed inside the ‘shirt’ cluster
(orange circles).

Analyzing content-ambiguity-related noise . In Fig. 1(a),
circles representing images with low confidence scores are
hard to recognize due to their small radii. Therefore, it is hard
to identify images with content-ambiguity-related noise since
their confidence scores are usually low. Alice then changed
the encoding and used radii to encode the uncertainty scores,
which effectively highlights those ambiguous samples. Since
these images are typically located on the decision boundaries
between different predictions, Alice used colors to encode
their predicted labels to facilitate the identification of these
samples (Fig. 1(b)).

First, Alice analyzed region D in Fig. 1, where there
were large circles on the boundary between the ‘knitwear’
and ‘sweater’ clusters. This indicates the model’s difficulty in
predicting the correct labels for these images. Upon inspection,
Alice identified several cases where the model’s predictions
were inconsistent with the annotated labels. Amongst them,
some images were correctly labeled but mispredicted by the
model. For example, D1 is labeled correctly as a ‘sweater’ ,
but the model mispredicts it as ‘knitwear’.

Second, Alice moved to a complex case, region E, char-
acterized by many large circles from three clusters. The
corresponding images belonged to three categories, ‘wind-
breaker’, ‘down coat’, and ‘jacket’. Some were predicted
inconsistently with their annotated labels due to similarity
of appearance. For example, both E1 and E2 are a ‘down

coat’ but are mislabeled as a ‘windbreaker’. E1 is incorrectly
predicted as a ‘jacket’,” while E2 is predicted as ground-truth
label ‘windbreaker’. Alice noticed that the content-ambiguity-
related noise within these categories led to many inconsistent
predictions with the annotated labels and thus hindered the
model from correctly classifying such images.
5.2.2 Boston Housing
In the second use case, we illustrate how NCP can be applied
to analyze tabular datasets. We used the Boston Housing
dataset, containing 506 samples. Each sample represents a
town associated with its housing price along with 13 quanti-
tative attributes derived from multiple factors that affect the
housing price, such as educational resources and the environ-
ment. Following previous works [60, 61], these quantitative
attributes were normalized to derive the features of each sam-
ple and calculate their similarity. Bob is a real estate agent. He
wanted to analyze how different factors affect housing prices
and compare housing prices in similar towns. To this end, he
employed NCP to generate a circle packing that placed similar
towns together, simultaneously encoding the housing price
and a selected quantitative attribute using different channels:
color and radius (Fig. 12). Here, a larger radius corresponds
to a higher housing price, and a darker color indicates a higher
value for the selected attribute.

Initially, Bob wanted to explore how educational resources
affected housing prices. Therefore, he used color to encode
‘pupil-teacher ratio’. A lighter color represents a lower ratio,
indicating more educational resources. He quickly identified a
region where several large, light-colored circles were gathered
(region A in Fig. 12(a)). This finding suggested that abundant
educational resources contributed to high housing prices. Ad-
jacent to this region, Bob noted another group of large circles
with darker colors (region B in Fig. 12(a)). He was curious
why these towns had fewer educational resources but still
maintained high housing prices compared to those in region
A. To explore this, he encoded other quantitative attributes
using colors. He then analyzed the color distributions of these
attributes in regions A and B. This analysis revealed a clear
difference in the distribution of ‘nitrogen oxide concentra-
tions’. As shown in Fig. 12(b), the towns in region B had
lighter colors than those in region A, which indicated lower
pollution levels. This suggested that the towns in region B
had a better natural environment, which played a key role in
their high housing prices. Such findings are difficult to obtain
through statistical correlations alone, as they involve only
a small subset of samples. In contrast, by visually placing
similar houses together and encoding housing prices as circle
radii, these findings are more readily identifiable.
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(a) Pupil-teacher ratio (b) Nitrogen oxide
concentration

(c) Accessibility to
radial highways

(d) Distances to five Boston
employment centers

(e) Population of
the lower status

(f) Crime rate

Fig. 12 Circle packing results for the Boston Housing dataset.
Larger circles represent higher housing prices; darker colors indicate
higher values for the selected quantitative attribute.

Subsequently, Bob wanted to explore the influence of trans-
portation on housing prices. To this end, he encoded ‘acces-
sibility to radial highways’ using colors. He observed that the
circles in region C had the highest values (Fig. 12(c)). How-
ever, the large variance in their radii suggested the presence of
other factors that affected their housing prices. To investigate
these factors, Bob encoded other quantitative attributes using
colors and examined their distributions within this region. The
large circles were associated with shorter ‘distances to five
Boston employment centers’ (C1 in Fig. 12(d)). This factor
also contributes to their high housing prices. On the contrary,
the small circles are associated with larger ‘populations with
lower status’ (C2, C3 in Fig. 12(e)) or higher ‘crime rates’ (C4,
C5 in Fig. 12(f)), which account for their low housing prices.

5.3 User Study

In addition to the quantitative evaluation and the use cases, we
also conducted a user study to demonstrate the effectiveness
and usefulness of NCP in data analysis. The study used 9
real-world datasets: 8 used in Sec. 5.1 and 1 used in Sec. 5.2.1.
5.3.1 Study Setup
Participants We recruited 16 participants (P1–P16), aged
24 to 32 years, comprising graduate students and professors
with extensive experience (⩾2 years) in visual analytics and
information visualization. Upon completion, each participant
received $15 compensation, regardless of performance.

Baseline methods We used 5 baseline methods: 3 circle
packing methods (SimiFC, AEF, and FD) used in Sec. 5.1,
and 2 scatterplot methods (Scatter-S and Scatter-L) that allow

overlap between circles. In the scatterplot methods, circle
positions were determined by t-SNE, consistent with the
initialization results of our method. Scatter-S uses the size of
circles to encode quantitative attributes, while Scatter-L uses
color lightness. These two methods are widely used in data
analysis [62].

Task Design Our study consisted of three tasks commonly
used in visual analytics [63–65].

Task 1—Cluster Identification: Participants were required
to identify the cluster to which a highlighted circle belonged.
They could use a lasso or click to select the circles in the
identified cluster and submit their answer.

Task 2—Outlier Identification: Participants were required
to judge whether a highlighted circle was an outlier. They
could analyze the neighborhood relationships around the
highlighted circle before submitting their answer.

Task 3—Quantitative Attribute Comparison: Participants
were required to compare three highlighted circles and identify
the one corresponding to the largest quantitative value. For
Scatter-L, this was achieved by comparing the lightness of
their colors, while for the other methods, it was done by
comparing their sizes.

Study Protocol Participants started by signing a consent
form and watching a tutorial video about the study procedure,
system interactions, and tasks. Following a within-subjects
design, each participant was required to evaluate six different
methods and finish all three tasks sequentially. Each task
consisted of both a practice and a test session. In the practice
session, participants were required to finish six trials, one
for each method. After completing the practice session and
confirming that they fully understood the tasks and meth-
ods, participants proceeded to the test session. Participants
were allowed to take short breaks whenever they requested
one. Upon completing each task, we assessed the partici-
pants’ workloads and fatigue levels using NASA’s Task Load
Index [66] with brief descriptions of the six methods, and
collected their feedback on the methods. For each trial, we
recorded participants’ answers and completion times.

To control the experiment duration and reduce the learning
effect, the nine datasets were evenly distributed across three
tasks, with each task assigned three datasets. Thus, each
participant completed 54 trials (3 tasks × 3 datasets × 6
methods). The entire study lasted 45-60 minutes. The method
order was also counterbalanced to reduce the learning effect.
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NCP FD AEF SimiFC Scat.-S Scat.-L NCP FD AEF SimiFC Scat.-S Scat.-L NCP FD AEF SimiFC Scat.-S Scat.-L

(a) (b) (c)

Fig. 13 User study results for three tasks: (a) Task 1—Cluster Identification; (b) Task 2—Outlier Identification; (c) Task 3—Quantitative
Attribute Comparison. Here, * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001. Scat.-S stands for Scatter-S, and Scat.-L
stands for Scatter-L.

5.3.2 Result Analysis

We analyzed both task accuracy and participants’ subjective
ratings for workload and fatigue.

Accuracy For each task, we computed participants’ average
accuracy across different methods. We conducted Friedman
tests and pair-wise Wilcoxon signed-rank tests with Bonferroni
correction for multiple comparisons. Statistical test results are
shown in Fig. 13. The Friedman test results indicate significant
differences between methods in the first two tasks: identify
the cluster (χ2(5) = 52.01, p < 0.0001), identify the outlier
(χ2(5) = 48.36, p < 0.0001), and no significant difference
in compare quantitative values (χ2(5) = 5.58, p = 0.3494).
In the subsequent analysis, we focus on pairwise comparisons.

Task 1—Cluster Identification: NCP delivers superior per-
formance to SimiFC, AEF, and FD while performing com-
parably to Scatter-S and Scatter-L. Participants consistently
praised NCP for its ability to produce “clear cluster bound-
aries.” This is because NCP explicitly optimizes cluster
convexity during force-directed refinement. Comparing per-
formance between NCP and scatterplot methods (Scatter-S
and Scatter-L) indicates that reducing the space between
clusters does not hamper the identification of clusters but
enhances layout compactness. This optimized use of space
improves visual clarity and thus facilitates deeper and more
effective data analysis.

Task 2—Outlier Identification: NCP significantly outper-
forms SimiFC, AEF, and FD, while performing comparably
to Scatter-S and Scatter-L. Participants described outliers
in NCP as “clearly noticeable.” Compared to other circle
packing methods, NCP achieves better cluster convexity and
clearer cluster boundaries, making outliers that deviate from
clusters with the same class label more noticeable. Compared

to Scatter-S and Scatter-L, the lack of overlap and compact-
ness of NCP is a double-edged sword. On the one hand, it
ensures that every circle is clearly visible, preventing outliers
from being too small to notice or occluded by others. On
the other hand, the compactness reduces the space between
circles, potentially drawing outliers that originally deviated
from clusters back toward the cluster boundaries, making
some of them harder to identify as outliers.

Task 3—Quantitative Attribute Comparison: Analysis re-
sults show no significant difference between methods. How-
ever, NCP achieved the highest mean accuracy (0.933) with
the lowest standard deviation (0.138), highlighting its effec-
tiveness in helping users to compare attribute values.

Workload Fig. 14 shows participant workload and fatigue
levels measured using NASA’s Task Load Index, including
mental demand, physical demand, temporal demand, effort,
performance, and frustration. For all three tasks, NCP per-
formed better than other circle packing methods across all six
measures, with lower mental and physical demands, reduced
effort, less temporal pressure, higher performance, and lower
frustration. P3 commented that NCP could “balance the
cluster overview and local details well”, enhancing analysis
efficiency and reducing workload. When compared to scat-
terplot methods, Scatter-S and Scatter-L resulted in greater
physical demands and higher frustration, particularly in Task
3—Quantitative Attribute Comparison. This is because scat-
terplot methods with lower compactness have reduced space
efficiency, leading to poorer readability. P5 commented: “At
the beginning, I could hardly compare the highlighted circles
since they were too small.” Even with the provided zooming
in and out interactions, P7 noted: “I have to zoom in several
times”, which caused a loss of broader context. In contrast, the
lack of overlap and compactness of NCP significantly enhance
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Fig. 14 Participants’ workload and fatigue levels according to
NASA’s Task Load Index: (a) Task 1—Cluster Identification; (b)
Task 2—Outlier Identification; (c) Task 3—Quantitative Attribute
Comparison. Here, error bars show the 95% confidence intervals.

readability, enabling participants to locate their targets and
perform comparisons with greater ease and efficiency.

6 Expert Feedback and Discussion
We interviewed three experts (E1–E3) specializing in visual
analytics and machine learning. Each interview took approxi-
mately an hour, including a 10-minute introduction to NCP,
a 30-minute session where we presented our use cases and
collected expert feedback, and a 20-minute discussion. Over-
all, the experts highlighted the utility of NCP in data analysis
and its convenient integration with existing algorithms. We
also identified several potential directions for future research
based on the interviews.

6.1 Usability

Enhancing data analysis Overall, the experts acknowl-
edged the capability of NCP to facilitate the analysis and

1A

2A

1B

2B

(a) SimiFC (b) AEF

Fig. 15 Two alternative layouts for the Clothing dataset.

comparison of similar data items of interest. They com-
mented that they could easily understand the cluster structures
and identify outliers with NCP. For example, in Fig. 1(a),
the cluster structures are clearly shown since circles of the
same colors are mostly grouped together. Circles representing
mislabeled images stand out due to the color differences from
their neighbors. This prompts users to examine whether they
are mislabeled. The experts also noted that the convexity of
the cluster shapes was beneficial for understanding clusters,
and consequently for identifying outliers efficiently.

The experts were also asked to compare the circle packing
results generated by NCP and the baseline methods, SimiFC
and AEF. They agreed that all these methods could generate
compact circle packing results, but the visual patterns differed
a lot in each case. Generally, they favored NCP and noted that
its results preserved cluster structures well. In contrast, the
experts identified distortions of clusters in the results of the
baseline methods. Using the clothing dataset from the first use
case as an example, SimiFC generated arc-shaped clusters, as
shown in Fig. 15(a). E3 pointed out that these visual patterns
might lead to misunderstandings of the data relationships.
For example, users may perceive a certain sequential order in
the placement of circles from the inside to the outside. Both
SimiFC and AEF might separate the clusters into different
sub-clusters. For example, the cluster of light blue circles is
disjoint in SimiFC (Figs. 15A1 and A2) and AEF (Figs. 15B1

and B2). In addition, the green, orange, pink, and red circles
representing the samples with random noise are placed near
the center of Fig. 1A. However, in Figs. 15A1, B1, and B2,
they are on the boundary of the cluster consisting of light blue
circles. This hinders the identification of these outliers.

Pipeline flexibility While our NCP method is primarily
designed for visualization, its flexible optimization pipeline
enables potential applications to other domains by support-
ing diverse algorithms and objective functions. First, our
pipeline supports the integration of different projection meth-
ods, power-diagram-based methods, and utilized forces. This
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flexibility allows users to tailor their choices in each phase
according to their specific needs. For example, in the case of
textual data analysis, users can employ least-squares projec-
tion in the planar graph initialization, which has been shown
to be effective in preserving neighborhood relationships in
textual data [67]. Second, the continuation method can be
extended to accommodate more objectives, such as ensur-
ing efficient connectivity while minimizing interference in
wireless sensor network design, and enhancing the aesthetic
arrangement of circles in design and art applications. By
carefully determining the sequence of objectives and con-
straints to be incorporated into the optimization process, it
achieves a well-balanced integration of multiple criteria. This
adaptability improves the effectiveness of our method in a
variety of optimization contexts, making it applicable to other
domains.

6.2 Limitations and Future Work

Dynamic parameter tuning Our NCP method achieves
a balance between three optimization objectives using the
parameters α and β. In our implementation, we determined
their values using a grid search, which is time-consuming. We
would like to explore automatic parameter tuning methods
to ease this process, such as multi-task learning [68]. In ad-
dition, E2 pointed out that user preferences for optimization
objectives could vary in different real-world applications.
For example, E2 said, “When the model prediction is re-
liable, I would prioritize optimizing convexity to enhance
the perceptual clarity of clusters. Otherwise, I would focus
more on neighborhood preservation, which helps me identify
prediction errors more easily.” Therefore, integrating user
feedback to dynamically adjust these parameters is essential,
to allow users to tailor the circle packing to their specific
requirements.

Integration with other visualizations techniques Our
experts have identified several opportunities to enhance NCP
through integration with other visualization techniques. First,
they proposed that the layout could be enhanced to provide
more guidance for data exploration. A possible method would
be to design informative glyphs displayed within circles,
to offer more details of data items. For example, in the
second use case, pie charts can be used to show how different
factors contribute to housing prices instead of encoding each
quantitative attribute individually. Another method would be
to select representative data items and show them in the empty
space, to help users better understand the data. Second, E2

and E3 suggested employing NCP for hierarchical exploration

of large data. By building a hierarchy for the data items, a
subset of data items can be sampled and visualized as in
the first use case. Alternatively, circles can represent groups
of similar data items instead of individual ones. Users can
navigate the whole dataset with the zooming function.

Interactive circle packing User interactions could also be
introduced to improve the packing result of NCP. Specifically,
E3 expressed the need to author functions to manipulate the
relative positions of circles. “If I notice that some circles
should form a cluster but are not placed adjacently, I want
to adjust their positions to make this cluster more evident.”
We should consider allowing users to move a few represen-
tative circles using drag-and-drop. During this process, the
proximity between circles changes. As a result, further inves-
tigation is required to ensure the stability of circle packing
and maintain users’ mental maps. We also should consider
supporting users directly specifying must-link constraints
between data items and incorporating these constraints into
the optimization process, to ensure that the generated circle
packing places circles of interest adjacent to one another.

7 Conclusions
In this paper, we have developed a new layout method, NCP,
for generating a neighborhood-preserving non-uniform circle
packing. We formulate circle packing as a planar graph em-
bedding problem and solve it using the continuation method.
By progressively incorporating multiple optimization ob-
jectives and constraints, this method steers the optimization
towards a more favorable solution. Our quantitative compar-
ison to baselines shows that NCP performs better in terms
of neighborhood preservation and convexity while achieving
comparable compactness. Two use cases further demonstrate
its application in data analysis.

.1 Appendix A: Projection Method and Associated
Parameters

We conducted quantitative experiments to select the best
projection method and associated parameters for the
neighborhood-preserving planar graph initialization.

Experimental Setting
Datasets We employed eight real-world datasets used in
Xia et al. [41], including Boston [69], Dermatology [70],
Ecoli [70], ExtYaleB [71], MNIST64 [70], Olive [72],
Weather [73], and World12D [69].

Measure We used the neighborhood preservation de-
gree [48, 49] to measure how well the neighborhood re-
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Table 3 Neighborhood preservation comparison for different pro-
jection methods.

Dataset t-SNE UMAP PCA MDS NMF
Boston 0.374 0.346 0.184 0.230 0.167
Dermatology 0.366 0.328 0.115 0.151 0.087
Ecoli 0.380 0.338 0.159 0.186 0.146
ExtYaleB 0.474 0.373 0.109 0.200 0.101
MNIST64 0.346 0.288 0.074 0.082 0.039
Olive 0.375 0.335 0.165 0.177 0.143
Weather 0.473 0.400 0.208 0.263 0.199
World12D 0.350 0.400 0.280 0.313 0.240
Average 0.392 0.351 0.162 0.200 0.140

lationships in the high-dimensional data space are preserved
in the projection results.

Methods We identified five projection methods: t-SNE [42],
UMAP [43], PCA [44], MDS [45], and NMF [46], based on
previous studies [41, 47].

Parameters We explored perplexity of t-SNE and neighbors
of UMAP, which are key factors that affect the neighborhood
preservation of these methods. The candidate parameters were
set the same as in Xia et al. [41]. Specifically, the perplexity
of t-SNE was chosen in {5, 15, 30, 40, 50}, and the neighbors
of UMAP was chosen in {4, 7, 10, 13, 16}. PCA, MDS, and
NMF applied default parameter settings.

Results
For t-SNE and UMAP, we first identified the best parameter
settings based on the average neighborhood preservation
across the eight datasets. The perplexity of t-SNE was set to 15,
and the Neighbors of UMAP was set as 4. We then compared
the neighborhood preservation for different datasets. As shown
in Table 3, t-SNE and UMAP significantly outperformed the
other methods, with t-SNE outperforming UMAP on seven
datasets and on average (0.392 v.s. 0.351). Fig. 16 provides a
visual comparison between these methods. In datasets like
ExtyaleB and MNIST64, t-SNE and UMAP clearly separated
different samples with different labels, but the other three
methods tended to confuse them. This explains the clear
gap between t-SNE/UMAP and the other methods. When
comparing the results of t-SNE and UMAP, the points in t-
SNE are more evenly distributed compared to UMAP, which
better reflects the neighborhood relationships. Therefore, we
selected t-SNE with a perplexity of 15 in our layout method.

Appendix B: Comparison of Different Initialization
Methods

We also conducted a study to compare circle packing results
generated using different initialization methods. We used the

same datasets and metrics as those in Sec. 5.1.

Results The experimental results are presented in Table 4.
Overall, t-SNE achieved the best average performance in
terms of neighborhood preservation. This finding aligns with
results in Appendix A, supporting the importance of initial-
ization methods in neighborhood preservation. All methods
performed comparably in terms of compactness and convex-
ity. This is because these objectives are incorporated into
optimization in subsequent steps, which are identical for all
methods reported in this section.

We also visually compared the circle packing results of the
reported methods in Figs. 17 and 18 to provide a more intuitive
explanation of their differences. Overall, all methods were able
to form reasonable clusters, as indicated by their comparable
convexity. However, there were differences in neighborhood
preservation within clusters. Taking the MNIST64 dataset
in Fig. 17 as an example, two highly similar digits ‘1’ were
correctly placed together in the results of UMAP and t-SNE,
whereas in the results of other methods, they were separated.
This separation complicates the accurate interpretation of
proximity within clusters.

Appendix C: Grid Search and Parameter Analysis

Our optimization problem is formulated in Eq. 1. Since the
parameters α and β, which balance the impact of the three
terms, affect the optimization result, we performed a grid
search to determine the optimal parameters.

Our measures involve neighborhood preservation (NP1

and NP2), compactness, and convexity, consistent with
those in our quantitative evaluation. We conducted a grid
search to investigate the relationships between different mea-
sures and choices of weights α and β. Here, we con-
sidered α ∈ [0.10, 0.20, 0.50, 1.00, 2.00, 5.00, 10.00] and
β ∈ [0.10, 0.20, 0.50, 1.00, 2.00, 5.00, 10.00]. The results
are shown in Fig. 19. For neighborhood preservation, NP1

and NP2 decrease as α and β increase: larger α and β give
less weight to neighborhood preservation Fn. For compact-
ness, the results are quite stable (between 0.867 and 0.874)
when α and β change due to use of sufficient iterations in the
force-directed layout to guarantee convergence. Convexity
decreases as α increases or β decreases, because larger α or
smaller β give less weight to Fv . The observed trends in how
the measures vary with changes in α and β also demonstrate
the effectiveness of adjusting optimization preferences by
setting different values for α and β.

To comprehensively compare the performance of our meth-
ods across different parameter settings, we designed a bal-
anced index, which combines NP1, NP2, compactness, and
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Fig. 16 Projection results for the eight datasets.



18 D. Li, J. Yuan, X. Guo, X. Wang, Y. Liu, W. Yang, S. Liu

UMAPPCA MDS t-SNE

Dermatology

Ecoli

ExtYaleB

MNIST64

Olive

Weather

World12D

Boston

NMF

Fig. 17 Circle packing results for the eight datasets generated by alternative initialization methods where the circle radii have a small
variance.
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Fig. 18 Circle packing results for the eight datasets generated by alternative initialization methods where the circle radii have a large
variance.
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Table 4 Performance comparison in terms of neighborhood preservation (NP1, NP2), compactness, and convexity.

Dataset
NP1 NP2 Compactness Convexity

Baseline Ours Baseline Ours Baseline Ours Baseline Ours
NMF PCA MDS UMAP NCP NMF PCA MDS UMAP NCP NMF PCA MDS UMAP NCP NMF PCA MDS UMAP NCP

Boston 0.150 0.170 0.219 0.301 0.341 0.305 0.336 0.389 0.422 0.423 0.890 0.881 0.879 0.876 0.889 0.810 0.851 0.797 0.807 0.809
Dermatology 0.119 0.125 0.160 0.280 0.311 0.256 0.259 0.281 0.399 0.385 0.886 0.881 0.868 0.872 0.874 0.795 0.771 0.802 0.803 0.790
Ecoli 0.164 0.163 0.191 0.316 0.344 0.276 0.292 0.308 0.393 0.411 0.870 0.875 0.862 0.871 0.874 0.784 0.801 0.794 0.812 0.831
ExtYaleB 0.201 0.225 0.241 0.387 0.422 0.296 0.322 0.357 0.469 0.487 0.881 0.868 0.865 0.870 0.868 0.781 0.778 0.763 0.777 0.806
MNIST64 0.073 0.090 0.092 0.213 0.306 0.143 0.172 0.186 0.325 0.372 0.871 0.860 0.861 0.869 0.863 0.804 0.800 0.834 0.787 0.827
Olive 0.147 0.157 0.159 0.269 0.328 0.277 0.280 0.285 0.371 0.414 0.868 0.861 0.866 0.865 0.862 0.825 0.824 0.829 0.789 0.817
Weather 0.179 0.188 0.223 0.351 0.448 0.332 0.350 0.359 0.527 0.567 0.868 0.864 0.868 0.867 0.868 0.811 0.797 0.811 0.811 0.795
World12D 0.235 0.312 0.289 0.319 0.379 0.375 0.442 0.447 0.483 0.463 0.901 0.883 0.881 0.876 0.896 0.734 0.819 0.807 0.828 0.809
Average 0.158 0.179 0.197 0.304 0.360 0.282 0.307 0.326 0.423 0.440 0.879 0.872 0.869 0.871 0.874 0.793 0.805 0.805 0.802 0.811

(a) Performance in the case where circle radii have a large variance.

Dataset
NP1 NP2 Compactness Convexity

Baseline Ours Baseline Ours Baseline Ours Baseline Ours
NMF PCA MDS UMAP NCP NMF PCA MDS UMAP NCP NMF PCA MDS UMAP NCP NMF PCA MDS UMAP NCP

Boston 0.175 0.181 0.206 0.332 0.365 0.309 0.345 0.366 0.442 0.437 0.895 0.876 0.870 0.879 0.888 0.819 0.824 0.844 0.826 0.833
Dermatology 0.115 0.126 0.153 0.320 0.364 0.240 0.246 0.272 0.398 0.399 0.875 0.877 0.862 0.875 0.875 0.834 0.797 0.860 0.828 0.845
Ecoli 0.172 0.170 0.171 0.311 0.350 0.273 0.278 0.297 0.404 0.416 0.869 0.866 0.862 0.862 0.866 0.806 0.841 0.830 0.816 0.821
ExtYaleB 0.194 0.220 0.216 0.385 0.476 0.302 0.308 0.354 0.475 0.505 0.870 0.862 0.855 0.869 0.862 0.775 0.760 0.791 0.765 0.808
MNIST64 0.070 0.091 0.100 0.225 0.327 0.138 0.165 0.185 0.326 0.375 0.853 0.852 0.850 0.854 0.854 0.829 0.834 0.835 0.800 0.808
Olive 0.161 0.162 0.158 0.273 0.342 0.274 0.281 0.273 0.371 0.422 0.861 0.857 0.855 0.859 0.858 0.819 0.848 0.851 0.789 0.839
Weather 0.192 0.212 0.241 0.379 0.483 0.325 0.353 0.352 0.539 0.578 0.877 0.867 0.862 0.859 0.860 0.850 0.841 0.847 0.805 0.816
World12D 0.264 0.268 0.323 0.363 0.380 0.373 0.431 0.450 0.473 0.477 0.881 0.885 0.879 0.876 0.885 0.768 0.800 0.808 0.845 0.796
Average 0.168 0.179 0.196 0.323 0.386 0.280 0.301 0.319 0.429 0.451 0.875 0.867 0.862 0.866 0.868 0.813 0.818 0.833 0.809 0.825

(b) Performance in the case where circle radii have a small variance.

convexity. The balanced index is defined as the sum of all
four measures. We calculated the balanced index across all
datasets, varying the parameters α and β and taking the av-
erage. As illustrated in Fig. 20, the analysis revealed a local
maximum region with relatively high and stable balanced
indexes (α ∈ [0.10, 0.20, 0.50] and β ∈ [0.50, 1.00, 2.00]),
with the peak occurring at α = 0.20 and β = 1.00. With this
optimal parameter setting, the method delivers near-optimal
performance across all evaluated dimensions: 99.5% of the
best NP1, 99.8% of the best NP2, 99.6% of the best com-
pactness, and 98.7% of the best convexity. Therefore, we
chose it as the default parameter setting.

Appendix D: The Layout Results

Figs.21 and 22 show the original t-SNE projection results (the
first column) and circle packing generated by SimiFC, AEF,
FD, and NCP (the remaining columns) for two settings: large
and small radius variance, respectively. Observing the shapes
of clusters, it is easy to identify that SimiFC tends to generate
arc-shaped clusters, and AEF tends to separate a cluster into
multiple components. Both failed to provide a clear cluster
structure, hindering analysis. In contrast, both FD and NCP
preserve the cluster structure well. However, compared to the
t-SNE projection result, FD often fails to preserve the relative
positions of clusters. Take the Boston dataset in Fig. 21 as

an example. In the t-SNE projection result (Fig. 21A), the
green cluster was placed in between the orange cluster and the
brown cluster, but FD dragged these three clusters together
(Fig. 21B). This would mislead users in understanding the
similarity relationships between the three clusters. Instead,
NCP preserved the relative positions of clusters in the t-SNE
projection well (Fig. 21C). In addition, NCP usually forms
smoother and more convex boundaries between the clusters
(e.g. , Fig. 21D versus Fig. 21E, and Fig. 21F versus Fig. 21G).
This further enhances the perception of cluster structures and
facilitates data analysis.

Appendix E: Papers Used to Summarize the Design
Criteria for NCP

Circle packing methods: [2–4, 7, 20, 21, 23, 24, 26–29, 74,
75].
Cluster-aware layout methods: [8–10, 76, 77].

Availability of data and materials

All data and materials are available on Github at https://gith
ub.com/NCP-2024/NCP. In particular, they include datasets,
source code, a video, experimental results concerning the
selection of projection methods and parameters, grid search
analysis for algorithm parameters, detailed layout results, and
the paper list used to summarize the design criteria for NCP.

https://github.com/NCP-2024/NCP
https://github.com/NCP-2024/NCP
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Fig. 21 Circle packing results for the eight datasets generated by SimiFC, AEF, FD, and NCP for circle radii with large variance.
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Fig. 22 Circle packing results of the eight datasets generated by SimiFC, AEF, FD, and NCP for circle radii with small variance.
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