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ABSTRACT
Few-shot classification refers to recognizing several novel classes
given only a few labeled samples. Many recent methods try to
gain an adaptation benefit by learning prior knowledge from more
base training domains, aka. multi-domain few-shot classification.
However, with extensive empirical evidence, we find more is not
always better: current models do not necessarily benefit from pre-
training on more base classes and domains, since the pre-trained
knowledge might be non-positive for a downstream task. In this
work, we hypothesize that such redundant pre-training can be
avoided without compromising the downstream performance. In-
spired by the selective activating/silencing mechanism in the bi-
ological memory system, which enables the brain to learn a new
concept from a few experiences both quickly and accurately, we
propose to actively silence those redundant base classes and do-
mains for efficient multi-domain few-shot classification. Then, a
novel data-driven approach named Active Silencing with hierarchi-
cal Subset Selection (AS3) is developed to address two problems:
1) finding a subset of base classes that adequately represent novel
classes for efficient positive transfer; and 2) finding a subset of base
learners (i.e., domains) with confident accurate prediction in a new
domain. Both problems are formulated as distance-based sparse
subset selection. We extensively evaluate AS3 on the recent META-
DATASET benchmark as well as MNIST, CIFAR10, and CIFAR100,
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where AS3 achieves over 100% acceleration while maintaining or
even improving accuracy. Our code and Appendix are available at
https://github.com/indussky8/AS3.
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1 INTRODUCTION
Learning a new task from a few annotated samples, i.e., few-shot
learning [11, 18, 21, 28, 49], remains a great challenge for machine
learning systems. It especially shows a noticeable gap compared
to the ability of humans to quickly understand new concepts from
just one or a handful of examples [22]. A promising direction to
address this challenge is developing methods that are capable of
performing transfer learning across the collective data of many
preexisting tasks [13, 16, 43]. As a result, many multi-domain few-
shot classificationmethods are proposed recently [4, 9, 25, 41]. Fig. 1
presents a general framework of this kind of methods. During the
first learning stage, a pre-trained model is built using a number of
large labeled datasets corresponding to different domains. While in
the second stage, the pre-trained model is adapted to several novel
classes of a new domain given only a few labeled samples.
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Figure 1: A general framework for multi-domain few-shot
classification: Given a number of labeled datasets, we first
learn a pre-trained model; and then adapt it to a new domain
with a few labeled samples from several novel classes.

One useful yet seldom investigated question in Fig. 1 iswhether it
is better for adaptation by employing more base classes and domains.
With extensive empirical evidence (see Sec. 5.2), we find more is not
always better. This is reasonable since without access to enough
labeled samples in a new domain, knowledge transfer from numer-
ous base classes (resp., base domains) to novel classes (resp., a new
domain) is difficult to determine, which might be positive, negative,
or neither. If the transfer is negative, i.e., learning a base class (resp.,
domain) in the first stage (Fig. 1) makes the prediction of a new class
(resp., domain) worse, then employing such a class (resp., domain)
will jeopardize the performance of few-shot classifiers. In addition,
when employing more base classes (resp., domains), the first learn-
ing stage will naturally require more computation overhead, which
is also a core problem under addressed as claimed in [9]. Thus, a suc-
cessful approach for multi-domain few-shot classification should 1)
not only address the regular challenge of few-shot classification,
i.e., how to adapt a model learned from base classes to several novel
classes; 2) but also discover what knowledge in base classes and
domains should be employed/silenced, to achieve generalization
efficiently with strong positive transfer.

By contrast, the biological memory system can learn new experi-
ences both quickly and accurately by choosing which cells in a given
brain region are active/silent at memory encoding and retrieval.
An emerging concept is that a given memory is supported by an
engram complex, composed of functionally connected engram cell
ensembles dispersed across multiple brain regions, with each ensem-
ble supporting a component of the overall memory [19]. As shown
in Fig. 2(a), retrieval of a target memory may lead to forgetting
of currently irrelevant competing memories, as well as irrelevant
engram ensembles in relevant memories. Understanding how the
brain encodes, stores, and uses information for new experiences,
especially at the level of the engram, we derive a novel, simple yet
effective approach named Active Silencing with hierarchical Subset
Selection (AS3) for efficient multi-domain few-shot classification.
In particular, to solve the two key issues above, we try to enforce an
efficient positive knowledge transfer by actively selecting the most
relevant base classes to novel classes, and then selecting the base
domains (i.e., learners) with accurate prediction in a new domain
(see Fig. 2(b)). We evaluate AS3 on META-DATASET [41], i.e., a
large-scale benchmark that contains diverse datasets and presents
more realistic tasks. Extensive experiments have demonstrated the
advantages of our proposal both in accuracy and efficiency.

Of note, our main contribution is not to propose negative trans-
fer, but to challenge the basic assumption of multi-domain few-shot
classification that more base domains are always better for a few-
shot task. In summary, the main contributions of this work include:
1) We present the first systematical investigation on whether it is
better in multi-domain few-shot classification to employ as more
base classes and domains as possible for adaptation to a new do-
main; 2) Inspired by the biological memory encoding and retrieval
mechanism, we propose a novel data-driven approach to actively
silence the redundant base classes and learners that interfere with
the learning of a new few-shot task; 3) Thanks to the hierarchical
subset selection of base classes and domains, our method achieves
over 100% acceleration while maintaining/improving accuracy.

2 RELATEDWORK
2.1 Single-Domain Few-Shot Classification
Single-domain few-shot classification aims to recognize samples
from several novel classes given only a few labeled samples, re-
lying on an extra labeled dataset from other classes (aka. base
classes). A wide variety of advanced methods have been proposed
and significantly improved the few-shot classification accuracy
on benchmark datasets (e.g., miniImageNet [5]). In general, these
typical methods can be roughly divided into three groups, i.e., fine-
tuning based methods [5, 7, 26, 39, 46], meta-learning based meth-
ods [12, 15, 23, 30, 32, 36, 37, 45], and metric-learning based meth-
ods [17, 20, 24, 26, 34, 35, 38, 42, 44]. A detailed discussion is pro-
vided in Appendix as we mainly focus on multi-domain few-shot
classification in this work.

2.2 Multi-Domain Few-Shot Classification
By contrast, multi-domain few-shot classification relies on numer-
ous extra large labeled datasets from diverse base domains, rather
than one. It is recently developed by Triantafillou et al. [41] who
propose a new benchmark, META-DATASET, and meanwhile, high-
light some challenges that current single-domain few-shot learning
methods face in the multi-domain setting. Crucially, they find that
the methods trained on all available base domains would normally
obtain improvements on some new domains at the expense of others.
Following on their work, progress has been made, which includes
the design of adapted hyper-parameter optimization strategy (e.g.,
SimpleCNAPS [2]), and more flexible meta-learning based algo-
rithms (e.g., CNAPs [31], MetaNorm [8], and TaskNorm [4]). The
most notable is SUR (Selecting Universarial Representation) [9] that
extracts a universal representation from a set of domain-specific
backbones. In particular, SUR prescribes a feature-selection pro-
cedure to weight each backbone and then produce an adapted
representation for a new few-shot task. However, except for the
underlying universal representation, there is no transfer learning
performedwith regard to how classification rules are inferred across
tasks and domains. To explore this question, based on SUR, Liu et
al. [27] design a Universal Representation Transformer (URT) layer,
which learns to retrieve/blend the appropriate backbones for a new
few-shot task. Empirical results show URT sets a new baseline on
META-DATASET. To further refine the universal representation for
novel classes, Li et al. [25] propose to learn a single set of universal
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(a) Biological memory encoding and retrieval mechanism, in which brain selects first
those relevant memories (i.e., memory complexes) to the retrieval memory, and then
the relevant engram ensembles in relevant memories.

(b) Multi-domain few-shot classification via hierarchical subset selection, in which
machine selects first those relevant base classes, and then the relevant base datasets (i.e.,
domains).

Figure 2: Functional consistency between biological memory system and our AS3 to learn new concepts from small samples. Of
note, machine can also first select base datasets as brain, when the number of base datasets is really large as that of memories.

deep representations by distilling the knowledge of multiple sepa-
rately trained networks. For more parameter efficiency, scalability,
and adaptability, few-shot learning with a universal template is
further developed [40], which fine-tunes its proposed initialization
with a few steps of gradient descent.

Of note, most above methods are model-driven, with the focus on
designing various training strategies to boost few-shot classification
accuracy. By contrast, our work is data-driven for both efficient and
accurate multi-domain few-shot classification by actively avoiding
redundant pre-training. The most related work to ours is [33, 50]
which clearly show that carefully selected base classes can lead
to much better accuracy in the single-domain setting. However, it
is indeed challenging to extend them in the multi-domain setting.
Specifically, the base class selection problem in [50] is formulated
as a submodular optimization program with cubic complexity with
respect to the number of base classes, while our proposal is with
linear complexity (see Sec. 4.1). Besides, the query samples are
involved in class selection [33], which is not applicable in realistic
scenarios. Notably, both of them rely on sample features from a pre-
trained network, while we just need class names for class selection.
In summary, our proposal enjoys a computational benefit in terms
of running time and scales up to a realistic large-scale case with
numerous base domains.

3 PRELIMINARY: SPARSE SUBSET SELECTION
As shown in Fig. 3, given two sets 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢 |𝑈 |} and
𝑉 = {𝑣1, 𝑣2, . . . , 𝑣 |𝑉 |}, the sparse subset selection algorithm aims to
find a subset 𝑆 ⊂ 𝑈 that can well represent 𝑉 by minimizing the
following cost function

L(𝑆) =
|𝑉 |∑︁
𝑗=1

min
𝑢𝑖 ∈𝑆

𝑑𝑖 𝑗︸        ︷︷        ︸
total cost

+ 𝜆 |𝑆 |︸︷︷︸
subset size

, (1)

where 𝑑𝑖 𝑗 is the distance between 𝑢𝑖 and 𝑣 𝑗 . A smaller 𝑑𝑖 𝑗 indicates
a better representation of 𝑣 𝑗 by 𝑢𝑖 . min𝑢𝑖 ∈𝑆 𝑑𝑖 𝑗 is the cost of repre-
senting 𝑣 𝑗 by 𝑆 . The first term in Eq. (1) is the total representation
cost of 𝑉 by 𝑆 , and the second term is the size of 𝑆 . 𝜆 ≥ 0 controls

the trade-off between the two terms. In general, it is expected to
find a small subset with the lowest total cost.

Figure 3: An example of sparse subset selection. Left: All the
elements of𝑈 are employed to represent the set𝑉 . Right: The
sparse subset selection algorithm finds a few representative
elements of𝑈 to well represent the set𝑉 . Adapted from [47].

Since L(𝑆) involves counting the number of elements in subset
𝑆 , minimizing L(𝑆) is a discrete optimization problem, and NP-
hard. To tackle this issue, we consider an optimization program on
unknown variables 𝑧𝑖 𝑗 associated with distance 𝑑𝑖 𝑗 . In particular,
𝑧𝑖 𝑗 ∈ {0, 1} is interpreted as the indicator of 𝑢𝑖 representing 𝑣 𝑗 ,
which is 1 when 𝑢𝑖 is employed to represent 𝑣 𝑗 , and is 0 otherwise.
To ensure that each 𝑣 𝑗 is represented by exact one element in 𝑈 ,
we must have

∑ |𝑈 |
𝑖=1 𝑧𝑖 𝑗 = 1. With this notation, we propose to solve

min
Z

total cost︷          ︸︸          ︷
|𝑉 |∑︁
𝑗=1

|𝑈 |∑︁
𝑖=1

𝑑𝑖 𝑗𝑧𝑖 𝑗 + 𝜆

subset size︷       ︸︸       ︷
|𝑈 |∑︁
𝑖=1

max
𝑗
𝑧𝑖 𝑗

s.t.
|𝑈 |∑︁
𝑖=1

𝑧𝑖 𝑗 = 1, ∀𝑗 ; 𝑧𝑖 𝑗 ∈ {0, 1}, ∀𝑖, 𝑗,

(2)

where Z = {𝑧𝑖 𝑗 }1≤𝑖≤ |𝑈 |,1≤ 𝑗≤ |𝑉 | .
∑ |𝑈 |
𝑖=1 𝑑𝑖 𝑗𝑧𝑖 𝑗 is the cost of repre-

senting 𝑣 𝑗 by subset 𝑆 . In addition, max𝑗 𝑧𝑖 𝑗 = 1 if 𝑢𝑖 is selected to
represent some elements in 𝑉 . Instead of counting the number of
elements in 𝑆 directly as in L(𝑆), we use the sum of max𝑗 𝑧𝑖 𝑗 to
denote the size of 𝑆 .
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To solve problem (2) efficiently, we further relax 𝑧𝑖 𝑗 ∈ {0, 1} to
a real number 𝑧𝑖 𝑗 ∈ [0, 1]. Then the integer programming-based
formulation in problem (2) is converted into a convex optimization
problem. As in [10], we adopt the alternating direction method
of multipliers (ADMM) [3, 14] to solve (2). Once we obtain the
optimal solution Z∗, then the selected subset 𝑆 = {𝑢𝑞 : ∃ 𝑗 ∈
{1, . . . , |𝑉 |}, 𝑧∗

𝑞𝑗
> 0}.

4 PROPOSED APPROACH: AS3
Few-shot classification aims to learn a classifier for a new task with
a few labeled samples. In other words, the model is learned from a
small training set (aka. support set) S = {(𝑥∗

𝑖
, 𝑦∗
𝑖
)}𝑛𝑆
𝑖=1, and evalu-

ated on a testing set (aka. query set) Q = {(𝑥 𝑗 , 𝑦 𝑗 )}
𝑛𝑄
𝑗=1. The (𝑥𝑖 , 𝑦𝑖 )

represents an image-label pair while the pair (S,Q) represents a
few-shot task that contains 𝐶 novel classes.

We consider the multi-domain few-shot classification problem
as in Fig. 1, which has two stages. At the first learning stage, a
learning algorithm receives a large base training set T = {D𝑏

𝑘
}𝐾
𝑘=1,

which contains 𝐵 base classes collected from𝐾 base domains (𝐾 > 1
and 𝐵 ≫ 𝐶 in general). Importantly, the training set T and the
few-shot task (S,Q) have no categories in common, and are even
from totally different distributions. Considering there exist massive
redundant, irrelevant and distracted classes in T for the task (S,Q),
we propose to select a small set of base classes in T that can well
represent novel classes in (S,Q) (see Sec. 4.1). This can not only
reduce the computational cost during the first learning stage, but
also silence the non-positive transfer to (S,Q). Then, only the
selected classes in T are used to learn a set of 𝐾 feature extractors
{𝑓𝜃𝑘 (·)}

𝐾
𝑘=1, where {𝜃𝑘 }

𝐾
𝑘=1 denotes 𝐾 base learners.

At the second learning stage, each base learner serves as a feature
extractor that maps an input 𝑥 from (S,Q) to a 𝑑-dimensional
representation 𝑓𝜃𝑘 (𝑥) ∈ R

𝑑 . For the 𝑗-th class in (S,Q), we build a
class centroid 𝑐𝑘

𝑗
by averaging support samples belonging to this

class using learner 𝜃𝑘 :

𝑐𝑘𝑗 =
1��S𝑗 �� ∑︁𝑖∈S𝑗

𝑓𝜃𝑘 (𝑥
∗
𝑖 ), S𝑗 = {𝑞 : 𝑦∗𝑞 = 𝑗}, (3)

where 𝑗 = 1, . . . ,𝐶 and 𝑘 = 1, . . . , 𝐾 . We consider a nearest centroid
classifier as in [9], where the likelihood function using learner 𝜃𝑘
on an input 𝑥 from (S,Q) is

𝑝𝑘 (𝑦 = 𝑙 | 𝑥) =
exp(−𝑑 (𝑓𝜃𝑘 (𝑥), 𝑐

𝑘
𝑙
))∑𝐶

𝑗=1 exp(−𝑑 (𝑓𝜃𝑘 (𝑥), 𝑐
𝑘
𝑗
))
. (4)

To classify 𝑥 using 𝜃𝑘 , we choose a distance function 𝑑 (·, ·) to be
negative cosine similarity, and assign 𝑥 to the closest centroid 𝑐𝑘

𝑗
. To

build a high-quality few-shot classifier, we further propose to find
a subset of base learners that capture different types of semantics
in (S,Q), as detailed in Sec. 4.2. This is equivalent to finding a few
base domains that can adequately represent a new domain.

Finally, to classify a new query 𝑥 , we first obtain its global multi-
domain representation 𝑓 (𝑥) that is the concatenation of represen-
tations using the selected learners. Then we assign a query 𝑥 to the
closest global centroid 𝑐 𝑗 , where 𝑐 𝑗 is the concatenation of 𝑐𝑘

𝑗
that

use the selected learners.

4.1 Base Class Selection
In the context of base class selection, 𝑈 in Sec. 3 refers to all 𝐵
base classes in the base training set T , 𝑉 is all 𝐶 novel classes in
the few-shot task (S,Q). We denote𝑈 = {𝑏𝑖 }𝐵𝑖=1 and 𝑉 = {𝑡 𝑗 }𝐶𝑗=1,
where 𝑏𝑖 and 𝑡 𝑗 are a base class name and a novel class name,
respectively. To calculate the total representation cost in problem
(2), we need to define the distance 𝑑𝑖 𝑗 between 𝑏𝑖 and 𝑡 𝑗 . Thanks
to the success of BERT to tackle a broad set of NLP tasks [6], an
efficient way to measure𝑑𝑖 𝑗 is based on the pre-trained BERTmodel

𝑔(·)1. Specifically,𝑑𝑖 𝑗 = 1− 𝑔 (𝑏𝑖 )T𝑔 (𝑡 𝑗 )
∥𝑔 (𝑏𝑖 ) ∥∥𝑔 (𝑡 𝑗 )∥ , where𝑔(·)maps an input

class name into a vector. Then the base class selection problem is
formulated as

min
Z

𝐶∑︁
𝑗=1

𝐵∑︁
𝑖=1

𝑑𝑖 𝑗𝑧𝑖 𝑗

s.t.
𝐵∑︁
𝑖=1

𝑧𝑖 𝑗 = 1, ∀𝑗 ; 𝑧𝑖 𝑗 ∈ [0, 1], ∀𝑖, 𝑗 ;
𝐵∑︁
𝑖=1

max
𝑗
𝑧𝑖 𝑗 ≤ 𝜏,

(5)

where 𝜏 ∈ [0, 𝐵] is the desired number of selected base classes.
In essence, problem (5) is a convex relaxation of problem (2) via
Lagrange multiplier, to minimize the total representation cost given
a selection ‘budget’ 𝜏 (detailed in Appendix). We can use ADMM
to solve this problem with 𝑂 (𝐵 log(𝐵)𝐶) ≈ 𝑂 (𝐵) computational
time, as detailed in Appendix. Then with any model architecture,
the 𝑘-th feature extractor 𝑓𝜃𝑘 (·) (i.e., the 𝑘-th base learner 𝜃𝑘 ) is
learned using the selected base classes in the 𝑘-th domain.

To improve applicability, we can also select base classes relying
on data, where we compute the class similarity in problem (5)
using data (pseudo-)centroids instead of class names (Please refer
to Appendix for more comparison). However, introducing BERT is
equivalent to replacing redundant and distracted calculation in base
domains with prior knowledge, benefiting efficient and accurate
few-shot learning. Further, our proposal about base class selection is
a general approach to boost the efficiency of multi-domain few-shot
classification without accuracy loss (see Fig. 6).

4.2 Base Learner Selection
When applying the subset selection algorithm to base learner selec-
tion, 𝑈 refers to the base learner set {𝜃𝑘 }𝐾𝑘=1, and 𝑉 is the support
set S = {(𝑥∗

𝑖
, 𝑦∗
𝑖
)}𝑛𝑠
𝑖=1. Inspired by [47], our goal is to select a set of

base learners with the properties of representativeness, confidence
and cooperation. For this end, problem (2) is rewritten as

min
Z

𝐾∑︁
𝑘=1

𝑛𝑠∑︁
𝑖=1

𝑧𝑘𝑖𝑑𝑘𝑖 + 𝛼1
𝐾∑︁
𝑘=1

𝜆𝑘 max
𝑖
𝑧𝑘𝑖

+ 𝛼2
∑︁

1≤𝑘<𝑙≤𝐾
𝜇𝑘𝑙 max

𝑖
𝑧𝑘𝑖 ·max

𝑖
𝑧𝑙𝑖

s.t. 𝑧𝑘𝑖 ≥ 0, ∀𝑘, 𝑖;
𝐾∑︁
𝑘=1

𝑧𝑘𝑖 = 1, ∀𝑖,

(6)

where the first term is the prediction error of using the selected
learners on all support samples, the second term is the sparsity
term that prefers a few confident learners, and the third term is

1We can also use other models, e.g., XLNET [48] or WordNet [29].
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the cooperation term to avoid severe contradiction between the
selected base learners. 𝛼1 and 𝛼2 control the trade-off among the
three terms. We set 𝛼1 = 𝛼2 = 0.5𝛼max, where 𝛼max is the critical
value that will result in selecting only one learner et al.[10]. Similar
to base class selection, we adopt ADMM to solve problem (6) with
𝑂 (𝐾 log(𝐾)𝑛𝑆 ) ≈ 𝑂 (𝐾) complexity, as detailed in Appendix.

In the first term of problem (6), we use the prediction confidence
to measure the prediction cost 𝑑𝑘𝑖 between a base learner 𝜃𝑘 and
a support sample 𝑥∗

𝑖
. We choose prediction confidence because it

is widely used to measure the performance of a machine learning
model [1]. Specifically, assume the predicted label distribution (resp.,
the predicted label) of 𝑥∗

𝑖
using learner 𝜃𝑘 is 𝑦𝑖𝑘 ∈ R𝐶 (resp., 𝑙𝑖𝑘 ∈

{1, . . . ,𝐶}). Then the prediction confidence of 𝜃𝑘 on 𝑥∗
𝑖
, denoted as

𝑚𝑘𝑖 , is defined as the largest value in 𝑦𝑖𝑘 if 𝑥∗
𝑖
is predicted correctly

(i.e., 𝑙𝑘
𝑖
= 𝑦∗

𝑖
), and as zero otherwise. Accordingly, we define 𝑑𝑘𝑖 =

1 −𝑚𝑘𝑖 (where 𝑑𝑘𝑖 ∈ [0, 1]), as we prefer the base learners with
both accurate and confident prediction.

In the second term of problem (6), through introducing a penalty,
we encourage the selected learners to be more confident of their
accurate prediction. Accordingly, we add 𝜆𝑘 for each learner 𝜃𝑘 ,
which is defined as its negative log-likelihood on support samples,
i.e., 𝜆𝑘 = −∑𝑛𝑆

𝑖=1 log 𝑝
𝑘 (𝑙𝑘

𝑖
= 𝑦∗

𝑖
| 𝑥∗
𝑖
). A smaller 𝜆𝑘 indicates a more

confident learners and hence tends to be selected by our algorithm.
In the third term of problem (6), to avoid severe contradiction

between two learners, we penalize the difference of their predictions.
KL-divergence is widely used to measure the difference between
two distributions, but it is not symmetric and hence not suitable to
measure the prediction difference between two learners.. Therefore,
we use the symmetric KL-divergence between predictions on the
support set, i.e., 𝜇𝑘𝑙 =

∑𝑛𝑆
𝑖=1 (KL(𝑦𝑖

𝑘 ∥𝑦𝑖 𝑙 ) + KL(𝑦𝑖 𝑙 ∥𝑦𝑖𝑘 ))/(2𝑛𝑆 ). A
larger value indicates a more severe contradiction between two
learners 𝜃𝑘 and 𝜃𝑙 .

5 EXPERIMENTS
In this section, we seek to answer two key questions:
Q1: Is it better to employ as more base classes and domains as
possible for adaptation to a new specific domain?
Q2: Can AS3 boost computational efficiency without accuracy loss
for multi-domain few-shot classification by base classes and do-
mains selection?

5.1 Datasets and Setup
Datasets.We evaluate our method on META-DATASET, a recent
large-scale multi-domain few-shot learning benchmark [41]. It
consists of 10 datasets with various data distributions across 10
domains, including natural images (ILSVRC-2012, CUB-200-2011,
Fungi, VGG Flower, MSCOCO), hand-written characters (Omniglot,
Quick Draw), human-created objects (Traffic Signs, Aircraft), and
textures images (Describable Textures). Traffic Sign and MSCOCO
are reserved for testing only, while all other 8 datasets (i.e., ILSVRC-
2012, Omniglot, Aircraft, CUB-200-2011, Describable Textures, Quick
Draw, Fungi, and VGG Flower) have their corresponding training,
validation and testing sets, with each class assigned to only one of
those sets. All these 8 training sets are collected together to serve as
the base training set of META-DATASET, which contains 3144 base

classes and involves 8 base domains in total. The testing on META-
DATASET refers to 10 domains, including the 8 testing sets above,
Traffic Sign and MSCOCO. More details of META-DATASET are
provided in [41]. To better study out-of-training-domain behavior,
we follow [31] and add 3 additional testing datasets (MNIST, CI-
FAR10, and CIFAR100). Consequently, we have 13 testing domains,
including MNIST, CIFAR10, CIFAR100, as well as the testing set of
META-DATASET. Few-shot tasks are sampled from each of these
testing domains using varying numbers of classes and shots.

ImplementationDetails.Webuild AS3 on ResNet-18 backbone,
which is consistent with [9, 27] for a fair comparison. As originally
suggested [41], all images are resized to 84 × 84 resolution. We set
the number of selected base classes 𝜏 ∈ {500, 1000, 1500}. Of note,
for efficient evaluation, we perform base class selection once for
600 sampled few-shot tasks in each testing domain. The training
details for each dataset are described in Appendix.

Evaluation Metrics. To report test results on META-DATASET,
we follow [41] and perform an independent evaluation for each of
the 13 datasets, where 600 few-shot tasks are sampled for evaluation
on each dataset. For all our experiments, the mean accuracy (in %)
over all test tasks with 95% confidence interval is reported.

In addition, we provide a quantitative evaluation for forward
knowledge transfer (FKT), which characterizes the transferability
that learning a specific set of base classes has on a given few-shot
task. Specifically, after selecting 𝜏 base classes, we compute the test
accuracy over this task, denoted by accuracy(𝜏), and then obtain

FKT(𝜏) = accuracy(all) − accuracy(𝜏), (7)

where accuracy(all) is the accuracy over this few-shot task using all
base classes without selection. The smaller the metric FKT(𝜏), the
better the selected base classes. A negative value of FKT(𝜏) indicates
there exists negative pre-trained knowledge in the remaining base
classes. Likewise, on each dataset, we will report the mean value
(in %) of FKT(𝜏) over the 600 sampled few-shot tasks.

5.2 A1: More Is Not Always Better
To answer the above first question (i.e., Q1), we survey existing
work that train two types of few-shot classifiers, i.e., using the base
training sets of ILSVRC-2012 and META-DATASET respectively.
Consequently, 8 related methods, including seven single-domain
few-shot classification methods (i.e., k-NN, Finetune, MatchingNet,
ProtoNet, fo-MAML, RelationNet, and ProtoMAML) [41], and one
multi-domain few-shot classification method (i.e., SUR [9]) are cho-
sen. Notably, META-DATASET includes ILSVRC-2012 that has 712
base classes and involves one base domain. We denote the predic-
tion accuracies using the two types of classifiers as accuracy(712)
and accuracy(all). Following our proposed metric FKT(·), we further
obtain FKT(712) = accuracy(all) − accuracy(712) for each method.
Here, FKT(712) measures the pre-trained knowledge transfer from
the 7 base training domains in META-DATASET (i.e., Omniglot,
Aircraft, CUB-200-2011, Describable Textures, Quick Draw, Fungi,
and VGG Flower) to a testing domain. A negative FKT(712) indi-
cates there exists negative pre-trained knowledge in these 7 base
training domains. Fig. 4 presents all the results of 8 methods on 10
testing domains of META-DATASET in terms of FKT(712).

As shown in Fig. 4, when using META-DATASET (i.e., 7 extra
base training domains besides ILSVRC-2012), there is a dramatic
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Figure 4: Comparison of 8 methods in terms of forward knowledge transfer (i.e., FKT(712)) that learning an extra 7 base domains
has on each testing domain. FKT(712) is de facto accuracy difference of two types of few-shot classifiers using the base training
sets of ILSVRC-2012 and META-DATASET, respectively. A negative value/bar indicates there exists negative transfer.

Dataset k-NN Finetune MatchingNet ProtoNet fo-MAML RelationNet ProtoMAML CNAPs TaskNorm SimpleCNAPs SUR URT AS3 VS.
ILSVRC 38.6±1.0 43.1±1.1 36.1±1.0 44.5±1.1 37.8±1.0 30.9±0.9 46.5±1.1 52.3 ± 1.0 50.6 ± 1.1 58.6 ± 1.1 56.3 ± 1.1 55.7 ± 1.1 56.3 ± 1.1 =
Omniglot 74.6±1.1 71.1±1.4 78.3±1.0 79.6±1.1 83.9±1.0 86.6±0.8 82.7±1.0 88.4 ± 0.7 90.7 ± 0.6 91.7 ± 0.6 93.1 ± 0.5 94.4 ± 0.4 93.9 ± 0.5 =
Aircraft 64.9±0.8 72.0±1.1 69.2±1.0 71.1±0.9 76.4±0.7 69.7±0.8 75.2±0.8 80.5 ± 0.6 83.8 ± 0.6 82.4 ± 0.7 85.4 ± 0.7 85.8 ± 0.6 87.9 ± 0.5 ↑
CUB 66.4±0.9 59.8±1.2 56.4±1.0 67.0±1.0 62.4±1.1 54.1±1.0 69.9±1.0 72.2 ± 0.9 74.6 ± 0.8 74.9 ± 0.8 71.4 ± 1.0 76.3 ± 0.8 76.1 ± 1.1 =

Textures 63.6±0.8 69.1±0.9 61.8±0.7 65.2±0.8 64.2±0.8 56.6±0.7 68.3±0.8 58.3 ± 0.7 62.1 ± 0.7 67.8 ± 0.8 71.5 ± 0.8 71.8 ± 0.7 72.1 ±0.8 ↑
Quick Draw 44.9±1.1 47.1±1.2 60.8±1.0 64.9±0.9 59.7±1.1 61.8±1.0 66.8±0.9 72.5 ± 0.8 74.8 ± 0.7 77.7 ± 0.7 81.3 ± 0.6 82.5 ± 0.6 80.9 ± 0.6 =

Fungi 37.1±1.1 38.2±1.0 33.7±1.0 40.3±1.1 33.5±1.1 32.6±1.1 42.0±1.2 47.4 ± 1.0 48.7 ± 1.0 46.9 ± 1.0 63.1 ± 1.0 63.5 ± 1.0 64.1 ± 1.6 ↑
VGG Flower 83.5±0.6 85.3±0.7 81.9±0.7 86.9±0.7 79.9±0.8 76.1±0.8 88.7±0.7 86.0 ± 0.5 89.6 ± 0.6 90.7 ± 0.5 82.8 ± 0.7 88.2 ± 0.6 84.2 ± 1.0 ↓
Traffic Signs 40.1±1.1 66.7±1.2 55.6±1.1 46.5±1.0 42.9±1.3 37.5±0.9 52.4±1.1 56.5 ± 1.1 - 59.2 ± 1.0 53.4 ± 1.0 51.1 ± 1.1 51.1 ± 1.2 ↓
MSCOCO 29.6±1.0 35.2±1.1 28.8±1.0 39.9±1.1 29.4±1.1 27.4±0.9 41.7±1.1 42.6 ± 1.1 43.4 ± 1.0 46.2 ± 1.1 52.4 ± 1.1 52.2 ± 1.1 51.7 ± 1.1 =
MNIST - - - - - - - 92.7 ± 0.4 92.3 ± 0.4 93.9 ± 0.4 94.3 ± 0.4 94.8 ± 0.4 93.3 ± 0.5 =
CIFAR10 - - - - - - - 61.5 ± 0.7 69.3 ± 0.8 74.3 ± 0.7 66.8 ± 0.9 67.3 ± 0.8 67.4 ± 0.9 ↓
CIFAR100 - - - - - - - 50.1 ± 1.0 54.6 ± 1.1 60.5 ± 1.0 56.6 ± 1.0 56.9 ± 1.0 56.8 ± 1.0 ↓

Average WG 59.2 60.7 64.9 64.9 62.2 58.5 67.5 69.7 71.9 73.8 75.6 77.3 77.0 =
Average SG - - - - - - - 60.7 - 66.8 64.7 64.5 64.1 =
Average all - - - - - - - 66.2 - 71.1 71.4 72.3 72.0 =

Table 1: Comparison of AS3 to the previous state-of-the-art approaches on 13 datasets. The few-shot dataset generalization
performance is shown in the second group of rows (Traffic Signs - CIFAR100), representing completely out-of-training-domain
datasets that require Strong Generalization (SG). For completeness, we also present results on the easier problem of Weak
Generalization (WG) in the first 8 rows (ILSVRC - VGG Flower) representing in-of-training-domain datasets. Each number
represents the average query set accuracy over 600 test tasks, and its 95% confidence interval. In addition, ‘-’ indicates the
accuracy is not reported in original paper. ‘↑’, ‘=’ and ‘↓’ in the column of ‘VS.’ represent AS3 achievesmore promising, comparable
and worse accuracy compared with the strongest competitor.

accuracy improvement on Omniglot, Aircraft and Quick Draw test-
ing domains for all compared methods. This is reasonable since the
images in these 3 datasets are significantly different from those in
ILSVRC-2012. Employing more classes and domains would most
likely bring positive knowledge transfer. By contrast, there is no ob-
vious improvement on the remaining 7 testing datasets, even using
strong baseline SUR [9]. This might lie in the neglect of data hetero-
geneity across base and novel classes/domains. As a result, learning
‘naively’ across all training datasets (e.g., by picking the next dataset
to use uniformly at random) does not automatically lead to that
desired benefit in most cases. Although exploring heterogeneous
data with feature selection, SUR treats all base classes equally that
might interfere with the learning of some novel classes. In addition,
to do well on𝐾 different base domains, base feature extractors must
be learned on those base training datasets from scratch. Then stored
parameters and computation amount in a few-shot classification
method are roughly increased to 𝐾 times. This just suggests that it
is not always better to employ as more base classes and domains as
possible for adaptation to a new domain. In particular, we should
try to avoid redundant training and non-positive transfer in base
training set, for efficient multi-domain few-shot classification.

5.3 A2: Comparison on Accuracy
Next, we answer the above second question (i.e., Q2) in terms of
model performance. For this goal, we employ the base training set
of META-DATASET that involves 8 base domains, and predict on all
13 testing domains/datasets. In particular, 8 testing datasets among
them are in-of-training-domain with weak generalization (WG)
from base training set, while other 5 testing datasets are out-of-
training-domain with strong generalization (SG) [40]. The competi-
tors include 7 single-domain few-shot classification methods (i.e., k-
NN, Finetune, MatchingNet, ProtoNet, fo-MAML, RelationNet, and
ProtoMAML) [41], and 5 multi-domain methods (i.e., CNAPs [31],
TaskNorm [4], SimpleCNAPs [2], SUR [9] and URT [27]). Here,
we fix 𝜏 = 1500 in AS3. Tab. 1 provides the comparison of all 12
competitors and our AS3. We observe that even if using half of the
base classes, AS3 outperforms the SOTA baselines SUR/URT on
8/4 datasets without compromising much performance on other
datasets, while almost consistently outperforms the remaining com-
pared methods. Of note, for out-of-training-domain testing, subset
selection is not as advantageous as in in-of-training-domain testing.
This may due to the totally different data distribution between base
and novel classes.
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Figure 5: The visualization of selection
results by AS3. (Left): Base class selec-
tion results about the averaged propor-
tion of selected base classes in each
base domain to represent each testing
domain; (Right): Base learner selection
results about the averaged selection
probability of each base domain to rep-
resent each testing domain.

To better understand how AS3 selects base classes and learn-
ers for adaptation and generalization, in Fig. 5, we visualize the
selection results from 8 base domains for 13 testing domains with
𝜏 = 1500. Specifically, the element on row 𝑡 and column 𝑘 of blue
heatmap (see Fig. 5 (Left)) is the averaged proportion of selected
base classes in the 𝑘-th base training domain, to represent 600 sam-
pled few-shot tasks in the 𝑡-th testing domain. It can be concluded
that for in-of-training-domain testing cases (i.e., 𝑡 ∈ [0, . . . , 7]), AS3
prefers to select base classes from the base domains similar to the
testing domain. For instance, when testing on ‘Fungi’ (𝑡 = 6), the se-
lected base classes are mainly from ‘Fungi’, ‘CUB’ and ‘VGG Flower’
(𝑘 = {3, 6, 7}). This might be because the pileum of birds in ‘CUB’
looks like fungi. By contrast, for out-of-training-domain testing
cases (i.e., 𝑡 ∈ [8, . . . , 12]), AS3 tends to select base classes from all
base domains. A similar phenomenon happens in orange heatmap
(see Fig. 5 (Right)), where the element on row 𝑡 and column 𝑘 is the
averaged selection probability of the 𝑘-th base domain to represent
600 sampled few-shot tasks in the 𝑡-th testing domain. The high
sparsity of these probabilities shows that AS3 prefers the base learn-
ers with high quality and relevance rather than treating all learners
equally. Thereinto, ‘Texture’ (𝑡 = 4) is an exception, which may
because there exists rich similar textural information in ‘ILSVRC’
(𝑘 = 0). The same reason makes most out-of-training-domain test-
ing domains select base domain ‘ILSVRC’ (𝑘 = 0). Putting the two
heatmaps together, we can find that even if some inappropriate
base classes are selected when 𝜏 is too large, the selection of base
learners can further silence the negative transfer brought by those
classes. This is just why AS3 selects domain/learner last.

Further, to explore the effectiveness of base class and learner
selection respectively, two own baselines are designed. Specifically,
we replace our BERT-based class selection proposal in Sec. 4.1 with
random selection, serving as Baseline1, and replace our learner
selection in Sec. 4.2 with using all 8 learners equally as Baseline2.
In addition, to verify base class selection is general to avoid non-
positive transfer, we also reproduce SUR [9] and URT [27] using our
selected base classes, denoted as ‘SUR w/ sel’ and ‘URT w/ sel’. For
eachmethod, we still report its mean accuracy on 600 few-shot tasks
sampled from each testing domain. Fig. 6 shows their accuracy on

all 13 testing domains as we change the number of selected classes
(i.e., 𝜏). Please refer to Appendix for corresponding comparison
in terms of FKT(𝜏). As the results show, 1) increasing the value
of 𝜏 , i.e., employing more base classes, might decrease the few-
shot classification accuracy except for Baseline1 (e.g., from 84.2%
to 82.9% on VGG Flower for 𝜏 = 1000, 1500 using AS3). Baseline1 is
an exception since random selection is totally irrelevant with the
testing domain. Additionally, by selecting only half of base classes,
the performance of these methods is higher or quite close to that of
using all base classes (e.g., 0.9% improvement on VGG Flower using
AS3). This demonstrates again that data is not always the more,
the better in multi-domain few-shot classification. We should avoid
redundant computation for improving efficiency without accuracy
loss. 2) AS3 performs better than two baselines in all the cases,
which shows the necessity of both base class and learner selection.
3) Using the selected base classes, SUR [9] and URT [27], in general,
can still achieve comparable or even higher accuracy compared to
that using all base classes. For instance, URT [27] has an obvious
improvement (2%) when using half of base classes. This indicates
our base class selection process is indeed general. 4) AS3, in general,
achieves comparable or higher accuracy compared to ‘SUR w/ sel’
and ‘URT w/ sel’. This mainly benefits from the active silencing of
negative transfer via learner selection.

5.4 A2: Comparison on Efficiency/Practicality
Finally, we continue answer the question ‘Q2’ in terms of model
efficiency. For this end, we provide the computational costs dur-
ing model training and testing, given a few-shot task with 𝐾 base
training domains. Specifically, a few-shot classification method
generally involves three modules during training phase (i.e., pre-
processing, backbone building, and adaptation), and inference dur-
ing testing phase. Compared with SUR and URT, AS3 has an added
overhead of base class selection in pre-processing. This includes
the complexity of BERT forward (𝑂 (𝐵 + 𝐶)), distance computa-
tion (𝑂 (𝐵𝐶)), and solving 5 (𝑂 (𝐵 log(𝐵)𝐶)), where 𝐵 and 𝐶 are
the numbers of base and novel classes. Supposing 𝑂𝑏 denotes the
training complexity of a single backbone, then SUR and URT are
with the complexity of 𝐾𝑂𝑏 for building backbones, while AS3 is
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Figure 6: Comparison of AS3 to two adapted SOTA approaches and two own baselines on 13 testing datasets, as a function of
the number of selected base classes (i.e., 𝜏). ‘ALL’ represents using all 3144 base classes in META-DATASET without selection.

with 𝐾𝑂𝑏/2 if it selects half of the base classes. For model adap-
tation, SUR mainly depends on feature selection, being optimized
for 40 SGD steps with the complexity of 𝑂 𝑓 , URT recurs to a trans-
former layer that is trained for 10,000 episodes with 𝑂𝑡 , while our
complexity is the lowest with 𝑂 (𝐾 log(𝐾)) using learner selection.
Here, 𝑂 𝑓 ≫ 𝑂𝑡 > 𝑂 (𝐾 log(𝐾)). Notable, the algorithm complexity
for base class and learner selection is really low. Thus, AS3 has
the lowest total training cost, although it adds a small overhead in
pre-processing. Further, the inference complexity of SUR, URT and
AS3 are 𝑂 (𝑛𝑄 ) since they all rely on distance metrics.

To present the overhead of AS3 more intuitively, we further pro-
vide the running time of each part in our algorithm. Concretely,
with 12212 MiB GPU memory usage on a single GTX TITAN X,
Tab. 2 reports the averaged physical time during model training
and inference for a few-shot task. It is concluded that the added
overhead on class selection can be neglected in practice to the back-
bone efficiency and accuracy improvements achieved by selection.
In particular, training on a subset of base classes/domains enables
the current backbones to converge faster, thus halving backbone
training time by halving base classes with ‘early stop’ as in Tab. 2 .
Fig. 7 additionally gives the convergence results on VGG Flower
comparing loss values with the time taken. Of note, our main fo-
cus is to classify a specific few-shot task (same to baselines (e.g.,
SUR [9] and URT [27])). With a wider range of unseen classes and
domains, i.e., a much larger divergence of base and novel distribu-
tions, more base classes/domains may benefit sometimes (as in the
out-of-training-domain results in Tab. 1)

SUR [9] URT [27] AS3

Training
Pre-process - - 20 sec.
Backbone 2 days 2 days 1 day
Adaptation 4 sec. 11 min. 0.38 sec.

Testing Inference 0.1 sec. 0.1 sec. 0.1 sec.
Table 2: Cost comparison on a few-shot task.

Figure 7: Convergence results on VGG Flower.

6 CONCLUSION
In this work, we investigate redundant non-positive transfer in
multi-domain few-shot classification, which largely limits its com-
putational efficiency and prediction accuracy. And then we propose
a novel data-driven approach to solve this problem. Thanks to the hi-
erarchical subset selection of base classes and domains, our method
achieves over 100% acceleration without accuracy loss. In partic-
ular, such a base class selection process is general for improving
the efficiency of few-shot classification. Further work will focus on
extending our method to other tasks, such as incremental few-shot
learning and few-shot object detection.
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