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1 SINGLE-DOMAIN FEW-SHOT
CLASSIFICATION

In this section, we discuss previous work on few-shot classification
in the single-domain setting. It recognizes samples from several
novel classes using only a few labeled samples, relying on an extra
labeled dataset from other classes (aka. base classes). A wide vari-
ety of advanced methods have been proposed and significantly im-
proved the few-shot classification performance on multiple bench-
mark datasets. In general, these typical methods can be roughly
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divided into three groups, i.e., fine-tuning based methods [3, 5, 16,
24, 29], meta-learning based methods [9, 10, 14, 18, 19, 21, 22, 28],
and metric-learning based methods [12, 13, 15, 16, 20, 23, 26, 27, 30].

Fine-tuning based methods [3, 5, 16, 24, 29] follow the standard
paradigm of transfer learning, and consist of two stages, i.e., pre-
training with base classes and fine-tuning with novel classes. Of
note, because of the extreme scarcity of training samples in the
target few-shot task, the pre-trained embedding parameters are
generally fixed in fine-tuning to avoid over-fitting. Representative
methods contain Baseline [3], Baseline++ [3], RFS-simple [3], etc.
The main difference between them is that they use different clas-
sifiers (e.g., linear classifier or logistic regression) in fine-tuning.
Although achieving good accuracy, the cross-entropy loss used in
pre-training may make the model overfit on base classes, thus lack-
ing generalization ability for novel classes. Meta-learning based
methods [9, 10, 14, 18, 19, 21, 22, 28] normally perform a meta-
learning paradigm on a sequence of few-shot tasks constructed
from base classes, aiming to make the learned across-task meta-
knowledge adapt to a new few-shot task. MAML [9] is one popular
representative method by training a model’s initial parameters with
one or a few gradient steps. Other representative methods include
Versa [10], R2D2 [1], LEO [19], MTL [22], ANIL [18], OVE [21], etc.
Compared with those early meta-learning based methods that learn
from scratch, the recent methods, such as MTL [22] and LEO [19],
enjoy considerable improvements with the pre-training technique.
Different from the two-loop structure of meta-learning based meth-
ods, metric-learning based methods [12, 13, 15, 16, 20, 23, 26, 27, 30]
directly compare the distances between the query samples and
given shots through one single feed-forward pass. ProtoNet [20] is
a typical one, which takes themean vector of shots as its correspond-
ing prototype representation, and then compare the relationships
between the query image and prototypes. Other representative
methods include MatchingNet [26], RelationNet [23], DN4 [15], etc.
Note that since there are no data-dependent parameters in the clas-
sifier (i.e., 1-NN), the metric-learning based methods do not have
the fine-tuning procedure, thus enjoying an efficient test stage. In
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fact, the few-shot classifier in our proposal is also based on metric
learning, where we assign an input sample to the closest centroid
using cosine similarity.

2 SOLVING BASE CLASS SELECTION
PROBLEM

The base class selection problem is formulated as

min
Z

𝐶∑︁
𝑗=1

𝐵∑︁
𝑖=1

𝑑𝑖 𝑗𝑧𝑖 𝑗

s.t.
𝐵∑︁
𝑖=1

𝑧𝑖 𝑗 = 1, ∀𝑗 ; 𝑧𝑖 𝑗 ∈ [0, 1], ∀𝑖, 𝑗 ;
𝐵∑︁
𝑖=1

max
𝑗
𝑧𝑖 𝑗 ≤ 𝜏,

(1)

where 𝜏 ∈ [0, 𝐵] is the desired number of selected base classes,
𝑫 = {𝑑𝑖 𝑗 } 𝑗=1,· · · ,𝐶𝑖=1,· · · ,𝐵 , and 𝒁 = {𝑧𝑖 𝑗 } 𝑗=1,· · · ,𝐶𝑖=1,· · · ,𝐵 . In essence, problem (1)
is a convex relaxation of problem (2) via Lagrange multiplier, to
minimize the total representation cost given a selection ‘budget’ 𝜏 .

min
Z

𝐶∑︁
𝑗=1

𝐵∑︁
𝑖=1

𝑑𝑖 𝑗𝑧𝑖 𝑗 + 𝜆
𝐵∑︁
𝑖=1

max
𝑗
𝑧𝑖 𝑗

s.t.
𝐵∑︁
𝑖=1

𝑧𝑖 𝑗 = 1, ∀𝑗 ; 𝑧𝑖 𝑗 ∈ [0, 1], ∀𝑖, 𝑗,

(2)

The reason is as follows. Augmenting the last inequality constraint
of problem (1) to the objective function via the Lagrange multiplier
𝜆 ∈ R, we can write the Lagrangian function of problem (1) as

L(𝒁 ) =
𝐶∑︁
𝑗=1

𝐵∑︁
𝑖=1

𝑑𝑖 𝑗𝑧𝑖 𝑗 + 𝜆(
𝐵∑︁
𝑖=1

max
𝑗
𝑧𝑖 𝑗 − 𝜏)

=

𝐶∑︁
𝑗=1

𝐵∑︁
𝑖=1

𝑑𝑖 𝑗𝑧𝑖 𝑗 + 𝜆
𝐵∑︁
𝑖=1

max
𝑗
𝑧𝑖 𝑗 − 𝜆𝜏,

(3)

where 𝒁 is subject to the probability simplex constraints. Thus,
minimizing L(𝒁 ) is equivalent to solving problem (2). Besides,
𝜏 can represent the size of selected subset, since

∑𝐵
𝑖=1max𝑗 𝑧𝑖 𝑗

approximately measures the number of nonzero rows in 𝒁 , and the
selected subset is indexed by the nonzero rows in 𝒁 .

Next, we show how to solve problem (1) using the ADMM ap-
proach in [8, 31]. To do so, an auxiliary matrix 𝑨 = {𝑎𝑖 𝑗 } 𝑗=1,· · · ,𝐶𝑖=1,· · · ,𝐵 is
introduced to problem (1) to rewrite the problem as

min
𝒁 ,𝑨

𝐶∑︁
𝑗=1

𝐵∑︁
𝑖=1

𝑑𝑖 𝑗𝑎𝑖 𝑗 +
𝜇

2
∥𝒁 −𝑨∥2𝐹

𝑠 .𝑡 . 1T𝑨 = 1T; 𝑨 ≥ 0; 𝒁 = 𝑨; ∥𝒁 ∥1,∞ ≤ 𝜏,

(4)

wherewe define ∥𝒁 ∥1,∞ =
∑𝐵
𝑖=1 ∥[𝑧𝑖1, · · · , 𝑧𝑖𝐶 ] ∥∞ =

∑𝐵
𝑖=1max𝑗 𝑧𝑖 𝑗 ,

and 𝜇 > 0 is a penalty parameter. Notice that problem (1) and prob-
lem (4) are equivalent, hence finding the same optimal solution
𝒁∗.

Augmenting the last equality constraint in problem (4) to the
objective function via the Lagrange multiplier matrix 𝚲 ∈ R𝐵×𝐶 ,
we can write the Lagrangian functions of problem (4) as

L(𝒁 ) = 𝜇

2





𝒁 − (
𝑨 − 𝚲

𝜇

)



2
𝐹

+ ℎ1 (𝑨,𝚲) (5)

Algorithm 1 Base Class Selection using ADMM
1: Input: 𝑫 ; 𝜏 ; 𝜇; 𝜀; maxIter.
2: Initialize: 𝑘 = 0; 𝒁 (0) = 𝑨(0) = 𝑰 ; 𝚲(0) = 0.
3: while (error1 > 𝜀 or error2 > 𝜀) and (𝑘 <maxIter) do
4: Update 𝑍 by the algorithm in [2, 4]

𝒁 (𝑘+1) = argmin
𝒁




𝒁 − (
𝑨(𝑘 ) − 𝚲

(𝑘 )
𝜇

)


2
𝐹
,

𝑠 .𝑡 . ∥𝒁 ∥1,𝑝 ≤ 𝜏 ;
5: Update 𝑨 by the algorithm in [6]

𝑨(𝑘+1) = argmin
𝑨





𝑨 − (
𝒁 (𝑘+1) + 𝚲

(𝑘 ) −𝜆3𝑫
𝜇

)



2
𝐹

, 𝑠 .𝑡 . 1T𝑨 = 1T, 𝑨 ≥ 0;

6: 𝚲
(𝑘+1) = 𝚲

(𝑘 ) + 𝜇 (𝒁 (𝑘+1) −𝑨(𝑘+1) ) ;
7: 𝑒𝑟𝑟𝑜𝑟1 =



𝒁 (𝑘+1) − 𝒁 (𝑘 ) 

∞ ;
8: 𝑒𝑟𝑟𝑜𝑟2 =



𝒁 (𝑘+1) −𝑨(𝑘+1) 

∞ ;
9: 𝑘 ← 𝑘 + 1;
10: end while
11: Output: Optimal solution 𝒁 ∗ = 𝒁 (𝑘 ) .

and

L(𝑨) = 𝜇

2





𝑨 − (
𝒁 + 𝚲 − 𝑫

𝜇

)



2
𝐹

+ ℎ2 (𝒁 ,𝚲), (6)

where the functions ℎ1 (·) and ℎ2 (·) do not depend on 𝒁 and 𝑨,
respectively. We can obtain the solution of minimizing L(𝒁 ) via
Euclidean projection onto the ℓ1 ball [2, 4]. Minimizing L(𝑨) sub-
ject to the probability simplex constraints

{
1T𝑨 = 1T;𝑨 ≥ 0

}
can

be done using the algorithm in [6].
Algorithm 1 shows the ADMM iterations that consist of mini-

mizing L(𝒁 ) and L(𝑨), and updating 𝚲.

Complexity Analysis. Our implementation results in a memory
and computational time complexity which are of the order of the
number of elements in 𝑫 . In addition, it allows for parallel imple-
mentation, which can further reduce the computational time. More
specifically,
• Minimizing the Lagrangian function in Eq. (5) with respect
to 𝒁 can be done in 𝑂 (𝐵𝐶) computational time. Notice that
we can perform the minimization in problem (5) via 𝐵 in-
dependent smaller optimization programs over the 𝐵 rows
of 𝒁 . Thus, having 𝑃 parallel processing resources, we can
reduce the computational time to 𝑂 (⌈𝐵/𝑃⌉𝐶).
• Minimizing the Lagrangian function in Eq. (6) with respect to
𝑨 subject to the probability simplex constraints

{
1T𝑨 = 1T;𝑨 ≥ 0

}
can be donewith𝑂 (𝐵 log(𝐵)𝐶) computational time (or𝑂 (𝐵𝐶)
expected time using the randomized algorithm in [6]). Notice
that we can minimize Eq. (6) via𝐶 independent smaller opti-
mization programs over the𝐶 columns of 𝑨. Thus, having 𝑃
parallel processing resources, we can reduce the computa-
tional time to 𝑂 (𝐵 log(𝐵) ⌈𝐶/𝑃⌉) (or 𝑂 (𝐵 ⌈𝐶/𝑃⌉) expected
time using the randomized algorithm in [6]).
• The update on Λ has 𝑂 (𝐵𝐶) computational time and can be
performed, respectively, by 𝐵 or𝐶 independent updates over
rows or columns, hence having 𝑂 (⌈𝐵/𝑃⌉𝐶) or 𝑂 (𝐵 ⌈𝐶/𝑃⌉)
computational time when using 𝑃 parallel processing re-
sources.

As a result, the proposed ADMM implementation for base class
selection can be performed in 𝑂 (𝐵 log(𝐵)𝐶) computational time.
In fact, our complexity is approximately equal to 𝑂 (𝐵) since 𝐶 ∈
{1, · · · , 10} and 𝐵 ≫ 𝐶 . We can reduce the computational time to
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𝑂 (⌈𝐵𝐶/𝑃⌉ log(𝐵)) using 𝑃 parallel resources. This provides signifi-
cant improvement with respect to standard convex solvers, such as
CVX [11], which typically have cubic or higher complexity in the
problem size.

3 SOLVING BASE LEARNER SELECTION
PROBLEM

We formulate the base learner selection problem as

min
Z

𝐾∑︁
𝑘=1

𝑛𝑠∑︁
𝑖=1

𝑧𝑘𝑖𝑑𝑘𝑖 + 𝛼1
𝐾∑︁
𝑘=1

𝜆𝑘 max
𝑖
𝑧𝑘𝑖

+ 𝛼2
∑︁

1≤𝑘<𝑙≤𝐾
𝜇𝑘𝑙 max

𝑖
𝑧𝑘𝑖 ·max

𝑖
𝑧𝑙𝑖

s.t. 𝑧𝑘𝑖 ≥ 0, ∀𝑘, 𝑖;
𝐾∑︁
𝑘=1

𝑧𝑘𝑖 = 1, ∀𝑖,

(7)

where 𝑫 = {𝑑𝑘𝑖 }𝑖=1,· · · ,𝑛𝑆𝑘=1,· · · ,𝐾 , and 𝒁 = {𝑧𝑘𝑖 }𝑖=1,· · · ,𝑛𝑆𝑘=1,· · · ,𝐾 .
Similar to base class selection, we adopt ADMM to solve problem

(7). To do so, an auxiliary matrix 𝑨 = {𝑎𝑘𝑖 }𝑖=1,· · · ,𝑛𝑆𝑘=1,· · · ,𝐾 is introduced
to problem (7) to rewrite the problem as

min
𝒁 ,𝑨

𝐾∑︁
𝑘=1

𝑛𝑆∑︁
𝑖=1

𝑎𝑘𝑖𝑑𝑘𝑖 +
𝜇

2
∥𝒁 −𝑨∥2𝐹 + ∥𝜆𝒁 ∥1,∞

+ Tr(ΩT (𝒁∞𝒁T
∞))

𝑠 .𝑡 . 1T𝑨 = 1T; 𝑨 ≥ 0; 𝒁 = 𝑨,

(8)

where 𝜇 > 0 is a penalty parameter. We define the row vector
𝑧𝑘 = [𝑧𝑘1, · · · , 𝑧𝑘𝑛𝑆 ] (i.e., the 𝑘-th row in the matrix 𝒁 ), 𝜆 =

[𝜆1, · · · , 𝜆𝐾 ], and ∥𝒁 ∥1,∞ =
∑𝐾
𝑘=1 ∥𝑧𝑘 ∥∞ =

∑𝐾
𝑘=1max𝑖 𝑧𝑘𝑖 . Then,

we have ∥𝜆𝒁 ∥1,∞ =
∑𝐾
𝑘=1 ∥ [𝜆𝑘𝑧𝑘 ∥∞ =

∑𝐾
𝑘=1 𝜆𝑘 max𝑖 𝑧𝑘𝑖 . Further,

we define the column vector 𝒁∞ = [∥𝑧1∥∞ , · · · , ∥𝑧𝐾 ∥∞], and Ω =

{𝜇𝑘𝑙 }𝑙=1,· · · ,𝐾𝑘=1,· · · ,𝐾 . Then Tr(ΩT (𝒁∞𝒁T
∞)) =

∑
1≤𝑘<𝑙≤𝐾 𝜇𝑘𝑙 max𝑖 𝑧𝑘𝑖 ·

max𝑖 𝑧𝑙𝑖 , where Tr(·) denotes the trace operator. Notice that prob-
lem (7) and problem (8) are equivalent, hence finding the same
optimal solution 𝒁∗.

Augmenting the last equality constraint in problem (8) to the
objective function via the Lagrange multiplier matrix 𝚲 ∈ R𝐾×𝑛𝑆 ,
we can write the Lagrangian functions of problem (8) as

L(𝒁 ) = 𝜇
2





𝒁 − (
𝑨 − 𝚲

𝜇

)



2
𝐹

+ ∥𝜆𝒁 ∥1,∞

+ Tr(ΩT (𝒁∞𝒁T
∞)) + ℎ1 (𝑨,𝚲),

(9)

and

L(𝑨) = 𝜇

2





𝑨 − (
𝒁 + 𝚲 − 𝑫

𝜇

)



2
𝐹

+ ℎ2 (𝒁 ,𝚲), (10)

where the functions ℎ1 (·) and ℎ2 (·) do not depend on 𝒁 and 𝑨,
respectively. Solving the minimization of Eq. (9) is more difficult
than that of Eq. (5) due to the last two regularizer. Here, we address
this problem via the efficient projections onto a non-negative max-
heap [17]. Minimizing the Lagrangian function in Eq. (10) subject
to the probability simplex constraints

{
1T𝑨 = 1T;𝑨 ≥ 0

}
can be

done using the algorithm in [6].

Algorithm 2 Base Learner Selection using ADMM
1: Input: 𝑫 ; 𝜆; Ω; 𝜇; 𝜀 , maxIter.
2: Initialize: 𝑘 = 0, 𝒁 (0) = 𝑨(0) = 𝑰 ; 𝚲(0) = 0.
3: while (error1 > 𝜀 or error2 > 𝜀) and (𝑘 <maxIter) do
4: Update 𝑍 by the algorithm in [17]

𝒁 (𝑘+1) = argmin
𝒁

𝜇

2




𝒁 − (
𝑨(𝑘 ) − 𝚲

(𝑘 )
𝜇

)


2
𝐹
+ ∥𝜆𝒁 ∥1,∞ + Tr(ΩT (𝒁∞𝒁T

∞)) ;
5: Update 𝑨 by the algorithm in [6]

𝑨(𝑘+1) = argmin
𝑨





𝑨 − (
𝒁 (𝑘+1) + 𝚲

(𝑘 ) −𝜆3𝑫
𝜇

)



2
𝐹

, 𝑠 .𝑡 . 1T𝑨 = 1T, 𝑨 ≥ 0;

6: 𝚲
(𝑘+1) = 𝚲

(𝑘 ) + 𝜇 (𝒁 (𝑘+1) −𝑨(𝑘+1) ) ;
7: 𝑒𝑟𝑟𝑜𝑟1 =



𝒁 (𝑘+1) − 𝒁 (𝑘 ) 

∞ ;
8: 𝑒𝑟𝑟𝑜𝑟2 =



𝒁 (𝑘+1) −𝑨(𝑘+1) 

∞ ;
9: 𝑘 ← 𝑘 + 1;
10: end while
11: Output: Optimal solution 𝒁 ∗ = 𝒁 (𝑘 ) .

Algorithm 2 shows the ADMM iterations that consist of mini-
mizing L(𝒁 ) and L(𝑨), and updating 𝚲.

Complexity Analysis. Our implementation results in a memory
and computational time complexity which are of the order of the
number of elements in 𝑫 . In addition, it allows for parallel imple-
mentation, which can further reduce the computational time. More
specifically,
• Minimizing the Lagrangian function in Eq. (9) with respect to
𝒁 can be done in𝑂 (𝐾𝑛𝑆 ) computational time. Notice that we
can perform the minimization in Eq. (9) via 𝐾 independent
smaller optimization programs over the 𝐾 rows of 𝒁 . Thus,
having 𝑃 parallel processing resources, we can reduce the
computational time to 𝑂 (⌈𝐾/𝑃⌉ 𝑛𝑆 ).
• Minimizing the Lagrangian function in Eq. (10) with re-
spect to 𝑨 subject to the probability simplex constraints{
1T𝑨 = 1T;𝑨 ≥ 0

}
can be done with 𝑂 (𝐾 log(𝐾)𝑛𝑆 ) com-

putational time (or𝑂 (𝐾𝑛𝑆 ) expected time using the random-
ized algorithm in [6]). Notice that we can solve Eq. (10) via
𝑛𝑆 independent smaller optimization programs over the 𝑛𝑆
columns of 𝑨. Thus, having 𝑃 parallel processing resources,
we can reduce the computational time to𝑂 (𝐾 log(𝐾) ⌈𝑛𝑆/𝑃⌉)
(or 𝑂 (𝐾 ⌈𝑛𝑆/𝑃⌉) expected time using the randomized algo-
rithm in [6]).
• The update on Λ has 𝑂 (𝐾𝑛𝑆 ) computational time and can
be performed, respectively, by 𝐾 or 𝑛𝑆 independent up-
dates over rows or columns, hence having 𝑂 (⌈𝐾/𝑃⌉ 𝑛𝑆 ) or
𝑂 (𝐾 ⌈𝑛𝑆/𝑃⌉) computational time when using 𝑃 parallel pro-
cessing resources.

As a result, the proposed ADMM implementation for base learner se-
lection can be performed in𝑂 (𝐾 log(𝐾)𝑛𝑆 ) computational time. In
fact, our complexity is approximately to 𝑂 (𝐾) and even 𝑂 (1) since
𝐾 and 𝑛𝑆 are generally very small. In our experiments, 𝐾 = 8 and
𝑛𝑆 ≤ 100.We can reduce the computational time to𝑂 (⌈𝐾𝑛𝑆/𝑃⌉ log(𝐾))
using 𝑃 parallel resources. This provides significant improvement
with respect to standard convex solvers, such as CVX [11], which
typically have cubic or higher complexity in the problem size.

4 IMPLEMENTATION DETAILS
To conduct the selection of base classes defined in problem (1), for
each testing dataset, we first compute the distance between a base
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class 𝑏𝑖 and a novel class 𝑐 𝑗 based on the pre-trained BERT model
𝑔(·), where the pre-trained BERT model is bert-base-uncased1 con-
taining 12-layers, 768 hidden and 12-heads. The BERT embedding
of each class is calculated based on the average of each word embed-
ding. Then, we can select the appropriate number of base classes
based on the parameter 𝜏 . Specially, if the number of selected class
is less than one-tenth of the training classes in a base dataset, we
drop this part of the data without training the corresponding base
learner. This is because the base learners obtained by training with
such a small amount of data are often unreliable. After the selection
of base classes, for each testing dataset, we train the corresponding
base learner using the labeled sample of selected base classes. We
train multiple ResNet-18 on selected base classes (a single ResNet
per base dataset). For optimization, we use SGD with momentum
and adjust the learning rate using cosine annealing. As presented
in Tab. 1, the training parameters of the base learner for each base
dataset are consistent with the SUR [7], including learning rate,
batch size and so on. In addition, we use early stopping to prevent
overfitting. For the selection of base learners, the max-iteration
is set 1000 and the weight of each base learner is normalized by
min-max.

5 EXPERIMENTAL RESULTS
A1: More Is Not Always Better. In original manuscript, we have

presented the forward knowledge transfer (FKT(712)) that learning
an extra 7 base domains has on each testing domain (i.e., Figure 4).
FKT(712) is de facto accuracy difference of two types of few-shot
classifiers using the base training sets of ILSVRC-2012 and META-
DATASET, denoted as accuracy(712) and accuracy(all) respectively.
There are 8 compared methods, including seven single-domain
few-shot classification methods (i.e., k-NN, Finetune, MatchingNet,
ProtoNet, fo-MAML, RelationNet, and ProtoMAML) [25], and one
multi-domain few-shot classification method (i.e., SUR [7]). Here,
we further provide the corresponding accuracy of each method (i.e.,
accuracy(712) and accuracy(all)) for ease of comparison (see Tab. 2).
By comparing the top and bottom results in Tab. 2, we can observe
that for each method, employing as more base classes and domains
as possible is not always better for adaptation and generalization to
a new domain. In particular, the recent multi-domain few-shot clas-
sification method, SUR, only achieves a significant improvement on
Omniglot, Aircraft, Quick Draw, and Fungi datasets by employing
more base classes and domains, while no obvious improvement and
even reduce on the remaining 6 testing datasets.

A2: Comparison on Accuracy. In Figure 6 of original manuscript,
as we change the number of selected classes (i.e., 𝜏) on META-
DATASET, we have showed the performance change using different
approaches, including two adapted SOTA approaches (i.e., ‘SUR w/
sel’ and ‘URT w/ sel’), two own baselines, and our AS3. To further
provide the corresponding forward knowledge transfer using our
proposed metric (FKT(𝜏)), we first present the prediction accuracy
using each approach in various cases in Tab. 3, and then visualize
this metric (FKT(𝜏)) in a bar plot (see Fig. 1). As expected, except
Baseline1, by selecting only half of base classes, all these approaches
can achieve higher or comparable performance to the case of using

1https://huggingface.co/transformers/pretrained_models.html

all base classes. Thus, base class selection can indeed silence non-
positive transfer in few-shot classification. In addition, for 7/13
testing datasets, only 500 base classes (i.e., 1/6 of all base classes)
are enough to obtain a promising result. Further, the accuracy
improvements on SUR and URT just verify that our base class
selection process is general, where the base class selection can be
combined with current SOTA few-shot classification approaches
in a play-and-plug way. In particular, the results about Baseline1
is reasonable, since random selection is totally irrelevant with the
testing domain. In summary, data is not always the more, the better
in multi-domain few-shot classification. We should avoid redundant
computation for improving efficiency without accuracy loss.

Ablation Study and Discussion. The base class selection relies
on the semantic encoding of the class names. However, this in-
formation may be unavailable in another setting, where few-shot
target domain may not provide the actual names of classes. To im-
prove applicability, we can also select base classes relying on data,
where we compute the class similarity in problem (1) using data
(pseudo-)centroids instead of class names. Fig. 2 presents the accu-
racy comparison using class names and sample real-centroids on 9
testing domains (i.e., ILSVRC-2012, Omniglot, Aircraft, CUB-200-
2011, Describable Textures, Quick Draw, Fungi, VGG Flower and
MSCOCO, indexed from ‘0’ to ‘8’). where using class names usually
achieves better accuracy since it may involve more priors with
Bert, and meanwhile, takes less time due to only one embedding
extraction for each class.
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Base training dataset learning rate weight decay Max iter. annealing freq. batch size class num.
ImageNet 3 × 10−2 7 × 10−4 480,000 48,000 64 712
Omniglot 3 × 10−2 7 × 10−4 50,000 3,000 16 883
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VGG Flower 3 × 10−2 7 × 10−4 50,000 1,500 8 71

Table 1: Training hyper-parameters of individual feature networks about each base training domain in META-DATASET.

Method ILSVRC Omniglot Aircraft CUB Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO
k-NN 41.0 37.1 46.8 50.1 66.4 32.1 36.2 83.1 44.6 30.4

Finetune 45.8 60.9 68.7 57.3 69.1 42.6 38.2 85.5 66.8 34.9
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SUR 56.3 67.5 50.4 71.7 70.2 52.4 39.1 84.3 50.1 52.8
Method ILSVRC Omniglot Aircraft CUB Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO
k-NN 38.6 74.6 65.0 66.4 63.6 44.9 37.1 83.5 40.1 29.6

Finetune 43.1 71.1 72.0 59.9 69.1 47.1 38.2 85.3 66.7 35.2
MatchingNet 36.1 78.3 69.2 56.4 61.8 60.8 33.7 81.9 55.6 28.8
ProtoNet 44.5 79.6 71.1 67.0 65.2 64.9 40.3 86.9 46.9 39.9
fo-MAML 37.8 83.9 76.4 62.4 64.2 59.7 33.5 79.9 42.9 29.4
RelationNet 30.9 86.6 69.7 54.1 56.6 61.8 32.6 76.1 37.5 27.4
ProtoMAML 46.5 82.7 75.2 69.9 68.3 66.8 42.0 88.7 52.4 41.7

SUR 56.1 93.1 85.4 71.4 71.5 81.30 63.1 82.8 53.4 52.4
Table 2: Few-shot classification results on 10 testing domains of META-DATASET, using models trained on the base training set
of ILSVRC-2012 only (top) and trained on all 8 base training datasets of META-DATASET (bottom).
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Figure 1: Comparison of AS3 to two adapted SOTA approaches and two own baselines on 13 testing datasets, in terms of FKT(𝜏).
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Dataset Selected classes number SUR w/ sel URT w/ sel Baseline1 Baseline2 AS3

ILSVRC

𝜏 = 500 50.7 ± 1.3 51.3 ± 1.1 37.5 ± 1.0 43.1 ± 1.4 50.1 ± 1.3
𝜏 = 1000 54.4 ± 1.1 55.2 ± 1.1 46.8 ± 1.0 43.6 ± 1.1 54.2 ± 1.1
𝜏 = 1500 56.5 ± 1.1 57.7 ± 1.1 49.8 ± 1.1 46.2 ± 1.1 56.3 ± 1.1
all classes 56.3 ± 1.1 55.7 ± 1.1 56.5 ± 1.0 44.8 ± 1.0 56.5 ± 1.0

Omniglot

𝜏 = 500 93.2 ± 1.0 93.2 ± 0.5 87.8 ± 0.9 93.3 ± 1.0 93.3 ± 1.0
𝜏 = 1000 94.0 ± 0.5 93.4 ± 0.4 91.5 ± 0.6 90.4 ± 0.7 93.9 ± 0.5
𝜏 = 1500 94.0 ± 0.5 94.5 ± 0.4 91.4 ± 0.6 92.1 ± 0.6 93.9 ± 0.5
all classes 93.1 ± 0.5 94.4 ± 0.4 93.1 ± 0.5 91.9 ± 0.6 93.1 ± 0.5

Aircraft

𝜏 = 500 87.9 ± 0.6 88.4 ± 0.5 54.8 ± 0.9 83.8 ± 0.8 87.9 ± 0.5
𝜏 = 1000 86.6 ± 0.6 87.0 ± 0.5 54.6 ± 0.9 83.0 ± 0.8 86.7 ± 0.6
𝜏 = 1500 88.0 ± 0.6 88.0 ± 0.5 73.1 ± 0.7 80.9 ± 0.9 87.8 ± 0.6
all classes 85.4 ± 0.7 85.8 ± 0.6 85.1 ± 0.7 77.1 ± 0.9 85.1 ± 0.7

CUB

𝜏 = 500 72.2 ± 1.2 74.7 ± 0.8 44.4 ± 4.1 68.0 ± 1.2 72.5 ± 1.1
𝜏 = 1000 73.3 ± 1.1 78.3 ± 0.8 55.0 ± 1.2 65.9 ± 1.1 74.7 ± 1.0
𝜏 = 1500 75.0 ± 1.0 78.4 ± 0.8 61.7 ± 1.3 66.8 ± 1.1 76.1 ± 1.1
all classes 71.4 ± 1.0 76.3 ± 0.8 76.3 ± 0.9 62.1 ± 1.1 76.3 ± 0.9

Textures

𝜏 = 500 63.7 ± 0.8 62.9 ± 0.7 58.6 ± 0.8 65.3 ± 0.9 64.5 ± 0.9
𝜏 = 1000 67.0 ± 0.9 67.3 ± 0.7 61.5 ± 0.8 63.1 ± 0.9 67.0 ± 0.9
𝜏 = 1500 69.9 ± 0.7 67.3 ± 0.8 66.2 ± 0.7 65.4 ± 0.8 71.5 ± 0.8
all classes 71.5 ± 0.8 71.8 ± 0.7 72.1 ± 0.8 62.7 ± 0.7 72.1 ± 0.8

Quick Draw

𝜏 = 500 81.1 ± 0.7 81.5 ± 0.6 70.7 ± 0.8 77.8 ± 0.8 80.4 ± 0.7
𝜏 = 1000 81.5 ± 0.6 81.2 ± 0.6 74.0 ± 0.8 75.7 ± 0.8 80.4 ± 0.7
𝜏 = 1500 81.3 ± 0.6 81.6 ± 0.6 76.5 ± 0.6 74.8 ± 0.8 80.9 ± 0.6
all classes 81.3 ± 0.6 82.5 ± 0.6 80.9 ± 0.6 75.1 ± 0.7 80.8 ± 0.6

Fungi

𝜏 = 500 55.3 ± 2.2 52.6 ± 1.0 34.7 ± 0.9 55.1 ± 2.1 55.1 ± 2.1
𝜏 = 1000 64.3 ± 1.7 63.8 ± 0.9 46.9 ± 1.0 55.6 ± 1.7 64.1 ± 1.6
𝜏 = 1500 64.3 ± 1.0 63.6 ± 0.9 49.3 ± 1.0 50.7 ± 1.1 64.0 ± 0.9
all classes 63.1 ± 1.0 63.5 ± 1.0 63.5 ± 0.9 46.1 ± 0.9 63.5 ± 0.9

VGG Flower

𝜏 = 500 81.0 ± 0.9 84.0 ± 0.7 78.8 ± 0.7 81.9 ± 0.8 79.9 ± 0.9
𝜏 = 1000 84.7 ± 0.9 87.9 ± 0.6 80.8 ± 0.9 86.5 ± 0.8 84.2 ± 1.0
𝜏 = 1500 83.4 ± 0.8 87.3 ± 0.6 79.4 ± 0.9 86.1 ± 0.7 82.9 ± 0.9
all classes 82.8 ± 0.7 88.2 ± 0.6 83.3 ± 0.8 84.5 ± 0.7 83.3 ± 0.8

Traffic Signs

𝜏 = 500 45.3 ± 1.2 40.3 ± 1.0 45.3 ± 1.1 44.5 ± 1.2 43.9 ± 1.3
𝜏 = 1000 51.5 ± 1.2 43.5 ± 1.0 49.3 ± 1.1 46.1 ± 1.2 51.1 ± 1.2
𝜏 = 1500 50.9 ± 1.1 44.8 ± 1.0 49.7 ± 1.0 47.1 ± 1.0 50.1 ± 1.1
all classes 53.4 ± 1.0 51.1 ± 1.1 50.5 ± 1.1 44.7 ± 1.0 50.5 ± 1.1

MSCOCO

𝜏 = 500 48.4 ± 1.3 45.7 ± 1.1 37.7 ± 1.0 46.0 ± 1.3 47.9 ± 1.3
𝜏 = 1000 46.9 ± 1.1 47.3 ± 1.1 44.4 ± 1.0 42.8 ± 1.1 46.8 ± 1.1
𝜏 = 1500 49.7 ± 1.0 48.5 ± 1.0 49.2 ± 1.1 43.9 ± 1.1 49.6 ± 1.0
all classes 52.4 ± 1.1 52.2 ± 1.1 51.7 ± 1.1 42.7 ± 1.0 51.7 ± 1.1

MNIST

𝜏 = 500 85.8 ± 0.7 86.7 ± 0.5 90.3 ± 0.5 90.2 ± 0.6 85.3 ± 0.7
𝜏 = 1000 92.8 ± 0.6 90.7 ± 0.5 87.1 ± 0.6 93.1 ± 0.6 91.6 ± 0.6
𝜏 = 1500 94.2 ± 0.5 88.0 ± 0.5 94.4 ± 0.4 94.7 ± 0.4 93.3 ± 0.5
all classes 94.3 ± 0.4 94.8 ± 0.4 92.7 ± 0.6 93.1 ± 0.6 92.7 ± 0.6

CIFAR10

𝜏 = 500 58.6 ± 1.0 56.2 ± 0.8 51.4 ± 0.8 58.4 ± 1.0 47.7 ± 1.4
𝜏 = 1000 61.6 ± 0.9 60.7 ± 0.8 57.3 ± 0.8 59.3 ± 0.9 61.9 ± 0.9
𝜏 = 1500 63.0 ± 0.9 61.7 ± 0.8 58.4 ± 0.9 59.4 ± 0.9 63.1 ± 1.0
all classes 66.8 ± 0.9 67.3 ± 0.8 67.4 ± 0.9 59.0 ± 0.8 67.4 ± 0.9

CIFAR100

𝜏 = 500 49.3 ± 1.3 49.7 ± 1.1 39.2 ± 1.1 47.0 ± 1.3 40.0 ± 1.5
𝜏 = 1000 52.3 ± 1.1 46.5 ± 1.1 45.6 ± 1.0 47.8 ± 1.2 52.4 ± 1.2
𝜏 = 1500 52.0 ± 1.1 51.2 ± 1.1 48.0 ± 1.0 47.5 ± 1.1 51.7 ± 1.1
all classes 56.6 ± 1.0 56.9 ± 1.0 56.8 ± 1.0 45.7 ± 1.0 56.8 ± 1.0

Table 3: Comparison of AS3 to two adapted SOTA approaches and two own baselines on 13 testing datasets, as a function of the
number of selected base classes (i.e., 𝜏). ‘ALL’ represents using all 3144 base classes in META-DATASET without selection.



MM ’22, October 10–14, 2022, Lisboa, Portugal Xingxing Zhang, Zhizhe Liu, Weikai Yang, Liyuan Wang, and Jun Zhu

Figure 2: Accuracy comparison using class names and sample real-centroids.
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